메뉴 건너뛰기




Volumn 19, Issue 9, 2009, Pages 434-446

Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes

Author keywords

[No Author keywords available]

Indexed keywords

GLYCOSYLPHOSPHATIDYLINOSITOL; MEMBRANE LIPID; MEMBRANE PROTEIN; PROTEINASE; TETRASPANIN;

EID: 69549088095     PISSN: 09628924     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcb.2009.06.004     Document Type: Review
Times cited : (492)

References (141)
  • 1
    • 0038557037 scopus 로고    scopus 로고
    • Lipids on the frontier: a century of cell-membrane bilayers
    • Edidin M. Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 4 (2003) 414-418
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 414-418
    • Edidin, M.1
  • 4
    • 0242302578 scopus 로고    scopus 로고
    • Tetraspanins: molecular organisers of the leukocyte surface
    • Tarrant J.M., et al. Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol. 24 (2003) 610-617
    • (2003) Trends Immunol. , vol.24 , pp. 610-617
    • Tarrant, J.M.1
  • 5
    • 28444441957 scopus 로고    scopus 로고
    • Tetraspanin functions and associated microdomains
    • Hemler M.E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6 (2005) 801-811
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 801-811
    • Hemler, M.E.1
  • 6
    • 56149120891 scopus 로고    scopus 로고
    • Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms
    • Barreiro O., et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 183 (2008) 527-542
    • (2008) J. Cell Biol. , vol.183 , pp. 527-542
    • Barreiro, O.1
  • 7
    • 50249151891 scopus 로고    scopus 로고
    • Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web
    • Espenel C., et al. Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J. Cell Biol. 182 (2008) 765-776
    • (2008) J. Cell Biol. , vol.182 , pp. 765-776
    • Espenel, C.1
  • 8
    • 33745235141 scopus 로고    scopus 로고
    • Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-Å resolution
    • Min G., et al. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-Å resolution. J. Cell Biol. 173 (2006) 975-983
    • (2006) J. Cell Biol. , vol.173 , pp. 975-983
    • Min, G.1
  • 9
    • 33747394451 scopus 로고    scopus 로고
    • Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1
    • Nydegger S., et al. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173 (2006) 795-807
    • (2006) J. Cell Biol. , vol.173 , pp. 795-807
    • Nydegger, S.1
  • 10
    • 0015514472 scopus 로고
    • The fluid mosaic model of the structure of cell membranes
    • Singer S.J., and Nicolson G.L. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720-731
    • (1972) Science , vol.175 , pp. 720-731
    • Singer, S.J.1    Nicolson, G.L.2
  • 11
    • 33845901815 scopus 로고    scopus 로고
    • Lipid rafts: at a crossroad between cell biology and physics
    • Jacobson K., et al. Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9 (2007) 7-14
    • (2007) Nat. Cell Biol. , vol.9 , pp. 7-14
    • Jacobson, K.1
  • 12
    • 33746586953 scopus 로고    scopus 로고
    • Progress in structure prediction of α-helical membrane proteins
    • Fleishman S.J., and Ben-Tal N. Progress in structure prediction of α-helical membrane proteins. Curr. Opin. Struct. Biol. 16 (2006) 496-504
    • (2006) Curr. Opin. Struct. Biol. , vol.16 , pp. 496-504
    • Fleishman, S.J.1    Ben-Tal, N.2
  • 13
    • 1842536499 scopus 로고    scopus 로고
    • Rafts: scale-dependent, active lipid organization at the cell surface
    • Mayor S., and Rao M. Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5 (2004) 231-240
    • (2004) Traffic , vol.5 , pp. 231-240
    • Mayor, S.1    Rao, M.2
  • 14
    • 33745801153 scopus 로고    scopus 로고
    • Lipid rafts: contentious only from simplistic standpoints
    • Hancock J.F. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7 (2006) 456-462
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 456-462
    • Hancock, J.F.1
  • 15
    • 45449105538 scopus 로고    scopus 로고
    • Proteins and cholesterol-rich domains
    • Epand R.M. Proteins and cholesterol-rich domains. Biochim. Biophys. Acta 1778 (2008) 1576-1582
    • (2008) Biochim. Biophys. Acta , vol.1778 , pp. 1576-1582
    • Epand, R.M.1
  • 16
    • 34548256844 scopus 로고    scopus 로고
    • Anatomy and dynamics of a supramolecular membrane protein cluster
    • Sieber J.J., et al. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317 (2007) 1072-1076
    • (2007) Science , vol.317 , pp. 1072-1076
    • Sieber, J.J.1
  • 18
    • 34548486955 scopus 로고    scopus 로고
    • The SPFH domain-containing proteins: more than lipid raft markers
    • Browman D.T., et al. The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol. 17 (2007) 394-402
    • (2007) Trends Cell Biol. , vol.17 , pp. 394-402
    • Browman, D.T.1
  • 19
    • 0035203504 scopus 로고    scopus 로고
    • The role of lipid rafts in signalling and membrane trafficking in T lymphocytes
    • Alonso M.A., and Millan J. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114 (2001) 3957-3965
    • (2001) J. Cell Sci. , vol.114 , pp. 3957-3965
    • Alonso, M.A.1    Millan, J.2
  • 20
    • 0035896648 scopus 로고    scopus 로고
    • Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts
    • Claas C., et al. Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J. Biol. Chem. 276 (2001) 7974-7984
    • (2001) J. Biol. Chem. , vol.276 , pp. 7974-7984
    • Claas, C.1
  • 21
    • 60649093057 scopus 로고    scopus 로고
    • Biochemical and proteomic approaches for the study of membrane microdomains
    • Zheng Y.Z., and Foster L.J. Biochemical and proteomic approaches for the study of membrane microdomains. J. Proteomics 72 (2009) 12-22
    • (2009) J. Proteomics , vol.72 , pp. 12-22
    • Zheng, Y.Z.1    Foster, L.J.2
  • 23
    • 1342306818 scopus 로고    scopus 로고
    • Nanoscale organization of multiple GPI-anchored proteins in living cell membranes
    • Sharma P., et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116 (2004) 577-589
    • (2004) Cell , vol.116 , pp. 577-589
    • Sharma, P.1
  • 24
    • 0034075971 scopus 로고    scopus 로고
    • High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes
    • Kenworthy A.K., et al. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11 (2000) 1645-1655
    • (2000) Mol. Biol. Cell , vol.11 , pp. 1645-1655
    • Kenworthy, A.K.1
  • 25
    • 57149125825 scopus 로고    scopus 로고
    • Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity
    • Goswami D., et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135 (2008) 1085-1097
    • (2008) Cell , vol.135 , pp. 1085-1097
    • Goswami, D.1
  • 26
    • 2942655668 scopus 로고    scopus 로고
    • Dynamics of putative raft-associated proteins at the cell surface
    • Kenworthy A.K., et al. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165 (2004) 735-746
    • (2004) J. Cell Biol. , vol.165 , pp. 735-746
    • Kenworthy, A.K.1
  • 27
    • 34249066421 scopus 로고    scopus 로고
    • GPI-anchored receptor clusters transiently recruit Lyn and G α for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1
    • Suzuki K.G., et al. GPI-anchored receptor clusters transiently recruit Lyn and G α for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177 (2007) 717-730
    • (2007) J. Cell Biol. , vol.177 , pp. 717-730
    • Suzuki, K.G.1
  • 28
    • 33746581138 scopus 로고    scopus 로고
    • Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork
    • Lenne P., et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25 (2006) 3245-3256
    • (2006) EMBO J. , vol.25 , pp. 3245-3256
    • Lenne, P.1
  • 29
    • 33645241165 scopus 로고    scopus 로고
    • Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane
    • Nicolau D.V., et al. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell. Biol. 26 (2006) 313-323
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 313-323
    • Nicolau, D.V.1
  • 30
    • 34249074042 scopus 로고    scopus 로고
    • 2+ signaling: single-molecule tracking study 2
    • 2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177 (2007) 731-742
    • (2007) J. Cell Biol. , vol.177 , pp. 731-742
    • Suzuki, K.G.1
  • 31
    • 34547561587 scopus 로고    scopus 로고
    • Plasma membrane nanoswitches generate high-fidelity Ras signal transduction
    • Tian T., et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat. Cell Biol. 9 (2007) 905-914
    • (2007) Nat. Cell Biol. , vol.9 , pp. 905-914
    • Tian, T.1
  • 32
    • 0344585437 scopus 로고    scopus 로고
    • Lipid rafts: elusive or illusive?
    • Munro S. Lipid rafts: elusive or illusive?. Cell 115 (2003) 377-388
    • (2003) Cell , vol.115 , pp. 377-388
    • Munro, S.1
  • 33
    • 0037316973 scopus 로고    scopus 로고
    • Caveolae - from ultrastructure to molecular mechanisms
    • Parton R. Caveolae - from ultrastructure to molecular mechanisms. Nat. Rev. Mol. Cell Biol. 4 (2003) 162-167
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 162-167
    • Parton, R.1
  • 34
    • 4544375506 scopus 로고    scopus 로고
    • Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic
    • Pelkmans L., et al. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118 (2004) 767-780
    • (2004) Cell , vol.118 , pp. 767-780
    • Pelkmans, L.1
  • 35
    • 0036151510 scopus 로고    scopus 로고
    • Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking
    • Thomsen P., et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13 (2002) 238-250
    • (2002) Mol. Biol. Cell , vol.13 , pp. 238-250
    • Thomsen, P.1
  • 36
    • 34548664143 scopus 로고    scopus 로고
    • Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin
    • Langhorst M.F., et al. Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett. 581 (2007) 4697-4703
    • (2007) FEBS Lett. , vol.581 , pp. 4697-4703
    • Langhorst, M.F.1
  • 37
    • 33845975257 scopus 로고    scopus 로고
    • Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts
    • Le Naour F., et al. Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6 (2006) 6447-6454
    • (2006) Proteomics , vol.6 , pp. 6447-6454
    • Le Naour, F.1
  • 38
    • 0345700782 scopus 로고    scopus 로고
    • Multiple levels of interactions within the tetraspanin web
    • Charrin S., et al. Multiple levels of interactions within the tetraspanin web. Biochem. Biophys. Res. Commun. 304 (2003) 107-112
    • (2003) Biochem. Biophys. Res. Commun. , vol.304 , pp. 107-112
    • Charrin, S.1
  • 39
    • 0344708475 scopus 로고    scopus 로고
    • Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain
    • Hemler M.E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 19 (2003) 397-422
    • (2003) Annu. Rev. Cell Dev. Biol. , vol.19 , pp. 397-422
    • Hemler, M.E.1
  • 40
    • 54049111439 scopus 로고    scopus 로고
    • MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells
    • Yanez-Mo M., et al. MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112 (2008) 3217-3226
    • (2008) Blood , vol.112 , pp. 3217-3226
    • Yanez-Mo, M.1
  • 41
    • 0030267031 scopus 로고    scopus 로고
    • Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY
    • Szollosi J., et al. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J. Immunol. 157 (1996) 2939-2946
    • (1996) J. Immunol. , vol.157 , pp. 2939-2946
    • Szollosi, J.1
  • 42
    • 0037310188 scopus 로고    scopus 로고
    • Functional domains in tetraspanin proteins
    • Stipp C.S., et al. Functional domains in tetraspanin proteins. Trends Biochem. Sci. 28 (2003) 106-112
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 106-112
    • Stipp, C.S.1
  • 43
    • 13844307886 scopus 로고    scopus 로고
    • Potentiation of the ligand-binding activity of integrin α3β1 via association with tetraspanin CD151
    • Nishiuchi R., et al. Potentiation of the ligand-binding activity of integrin α3β1 via association with tetraspanin CD151. Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 1939-1944
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 1939-1944
    • Nishiuchi, R.1
  • 44
    • 0033563224 scopus 로고    scopus 로고
    • Selective tetraspan-integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disrupting tetraspan interactions
    • Serru V., et al. Selective tetraspan-integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disrupting tetraspan interactions. Biochem. J. 340 (1999) 103-111
    • (1999) Biochem. J. , vol.340 , pp. 103-111
    • Serru, V.1
  • 45
    • 0347297508 scopus 로고    scopus 로고
    • A functionally relevant conformational epitope on the CD9 tetraspanin depends on the association with activated β1 integrin
    • Gutierrez-Lopez M.D., et al. A functionally relevant conformational epitope on the CD9 tetraspanin depends on the association with activated β1 integrin. J. Biol. Chem. 278 (2003) 208-218
    • (2003) J. Biol. Chem. , vol.278 , pp. 208-218
    • Gutierrez-Lopez, M.D.1
  • 46
    • 0035862964 scopus 로고    scopus 로고
    • CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs
    • Kitadokoro K., et al. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J. 20 (2001) 12-18
    • (2001) EMBO J. , vol.20 , pp. 12-18
    • Kitadokoro, K.1
  • 47
    • 0942279501 scopus 로고    scopus 로고
    • Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking
    • Kovalenko O.V., et al. Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem. J. 377 (2004) 407-417
    • (2004) Biochem. J. , vol.377 , pp. 407-417
    • Kovalenko, O.V.1
  • 48
    • 33744949738 scopus 로고    scopus 로고
    • Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization
    • Yang X.H., et al. Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J. Biol. Chem. 281 (2006) 12976-12985
    • (2006) J. Biol. Chem. , vol.281 , pp. 12976-12985
    • Yang, X.H.1
  • 49
    • 33745195489 scopus 로고    scopus 로고
    • Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites
    • Silvie O., et al. Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites. J. Cell Sci. 119 (2006) 1992-2002
    • (2006) J. Cell Sci. , vol.119 , pp. 1992-2002
    • Silvie, O.1
  • 50
    • 0037020085 scopus 로고    scopus 로고
    • Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling
    • Berditchevski F., et al. Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J. Biol. Chem. 277 (2002) 36991-37000
    • (2002) J. Biol. Chem. , vol.277 , pp. 36991-37000
    • Berditchevski, F.1
  • 51
    • 0037051906 scopus 로고    scopus 로고
    • Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation
    • Charrin S., et al. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett. 516 (2002) 139-144
    • (2002) FEBS Lett. , vol.516 , pp. 139-144
    • Charrin, S.1
  • 52
    • 0036198534 scopus 로고    scopus 로고
    • Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology
    • Yang X., et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell 13 (2002) 767-781
    • (2002) Mol. Biol. Cell , vol.13 , pp. 767-781
    • Yang, X.1
  • 53
    • 11244304502 scopus 로고    scopus 로고
    • Palmitoylation supports assembly and function of integrin-tetraspanin complexes
    • Yang X., et al. Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J. Cell Biol. 167 (2004) 1231-1240
    • (2004) J. Cell Biol. , vol.167 , pp. 1231-1240
    • Yang, X.1
  • 54
    • 0344897638 scopus 로고    scopus 로고
    • Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR
    • Odintsova E., et al. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J. Cell Sci. 116 (2003) 4557-4566
    • (2003) J. Cell Sci. , vol.116 , pp. 4557-4566
    • Odintsova, E.1
  • 55
    • 34247590130 scopus 로고    scopus 로고
    • Palmitoylation of ligands, receptors, and intracellular signaling molecules
    • Resh M.D. Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. STKE 2006 (2006) re14
    • (2006) Sci. STKE , vol.2006
    • Resh, M.D.1
  • 56
    • 3843101584 scopus 로고    scopus 로고
    • B cell signaling is regulated by induced palmitoylation of CD81
    • Cherukuri A., et al. B cell signaling is regulated by induced palmitoylation of CD81. J. Biol. Chem. 279 (2004) 31973-31982
    • (2004) J. Biol. Chem. , vol.279 , pp. 31973-31982
    • Cherukuri, A.1
  • 57
    • 2442450501 scopus 로고    scopus 로고
    • CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner
    • Clark K.L., et al. CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J. Biol. Chem. 279 (2004) 19401-19406
    • (2004) J. Biol. Chem. , vol.279 , pp. 19401-19406
    • Clark, K.L.1
  • 58
    • 51049123096 scopus 로고    scopus 로고
    • DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151
    • Sharma C., et al. DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol. Biol. Cell 19 (2008) 3415-3425
    • (2008) Mol. Biol. Cell , vol.19 , pp. 3415-3425
    • Sharma, C.1
  • 59
    • 59349119386 scopus 로고    scopus 로고
    • Large-scale profiling of protein palmitoylation in mammalian cells
    • Martin B.R., and Cravatt B.F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6 (2009) 135-138
    • (2009) Nat. Methods , vol.6 , pp. 135-138
    • Martin, B.R.1    Cravatt, B.F.2
  • 60
    • 0141650520 scopus 로고    scopus 로고
    • A physical and functional link between cholesterol and tetraspanins
    • Charrin S., et al. A physical and functional link between cholesterol and tetraspanins. Eur. J. Immunol. 33 (2003) 2479-2489
    • (2003) Eur. J. Immunol. , vol.33 , pp. 2479-2489
    • Charrin, S.1
  • 61
    • 0037072814 scopus 로고    scopus 로고
    • Tetraspanin CD9 is a "proteolipid", and its interaction with α3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility
    • Kawakami Y., et al. Tetraspanin CD9 is a "proteolipid", and its interaction with α3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J. Biol. Chem. 277 (2002) 34349-34358
    • (2002) J. Biol. Chem. , vol.277 , pp. 34349-34358
    • Kawakami, Y.1
  • 62
    • 34247184670 scopus 로고    scopus 로고
    • Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse
    • Todeschini A.R., et al. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J. Biol. Chem. 282 (2007) 8123-8133
    • (2007) J. Biol. Chem. , vol.282 , pp. 8123-8133
    • Todeschini, A.R.1
  • 63
    • 29444444292 scopus 로고    scopus 로고
    • Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders
    • Rosa D., et al. Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 18544-18549
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 18544-18549
    • Rosa, D.1
  • 64
    • 0031018172 scopus 로고    scopus 로고
    • A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase
    • Berditchevski F., et al. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J. Biol. Chem. 272 (1997) 2595-2598
    • (1997) J. Biol. Chem. , vol.272 , pp. 2595-2598
    • Berditchevski, F.1
  • 65
    • 0035816663 scopus 로고    scopus 로고
    • Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific β1 integrins
    • Zhang X.A., et al. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific β1 integrins. J. Biol. Chem. 276 (2001) 25005-25013
    • (2001) J. Biol. Chem. , vol.276 , pp. 25005-25013
    • Zhang, X.A.1
  • 66
    • 2342653563 scopus 로고    scopus 로고
    • Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Gα q/11 association
    • Little K.D., et al. Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Gα q/11 association. Mol. Biol. Cell 15 (2004) 2375-2387
    • (2004) Mol. Biol. Cell , vol.15 , pp. 2375-2387
    • Little, K.D.1
  • 67
    • 0035207920 scopus 로고    scopus 로고
    • Complexes of tetraspanins with integrins: more than meets the eye
    • Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell Sci. 114 (2001) 4143-4151
    • (2001) J. Cell Sci. , vol.114 , pp. 4143-4151
    • Berditchevski, F.1
  • 68
    • 35748975965 scopus 로고    scopus 로고
    • Tetraspanin CD151 promotes cell migration by regulating integrin trafficking
    • Liu L., et al. Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J. Biol. Chem. 282 (2007) 31631-31642
    • (2007) J. Biol. Chem. , vol.282 , pp. 31631-31642
    • Liu, L.1
  • 69
    • 33947664480 scopus 로고    scopus 로고
    • Calcium-dependent association of calmodulin with the C-terminal domain of the tetraspanin protein peripherin/rds
    • Edrington T.C., et al. Calcium-dependent association of calmodulin with the C-terminal domain of the tetraspanin protein peripherin/rds. Biochemistry 46 (2007) 3862-3871
    • (2007) Biochemistry , vol.46 , pp. 3862-3871
    • Edrington, T.C.1
  • 70
    • 33749635768 scopus 로고    scopus 로고
    • Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63
    • Latysheva N., et al. Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol. Cell. Biol. 26 (2006) 7707-7718
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 7707-7718
    • Latysheva, N.1
  • 71
    • 0036196266 scopus 로고    scopus 로고
    • Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes
    • Rous B.A., et al. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol. Biol. Cell 13 (2002) 1071-1082
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1071-1082
    • Rous, B.A.1
  • 72
    • 33745837412 scopus 로고    scopus 로고
    • EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins
    • Sala-Valdes M., et al. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem. 281 (2006) 19665-19675
    • (2006) J. Biol. Chem. , vol.281 , pp. 19665-19675
    • Sala-Valdes, M.1
  • 73
    • 13444259476 scopus 로고    scopus 로고
    • The tetraspanin web modulates immune-signalling complexes
    • Levy S., and Shoham T. The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol. 5 (2005) 136-148
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 136-148
    • Levy, S.1    Shoham, T.2
  • 74
    • 0035376066 scopus 로고    scopus 로고
    • Tetraspanins and intercellular interactions
    • Yanez-Mo M., et al. Tetraspanins and intercellular interactions. Microcirculation 8 (2001) 153-168
    • (2001) Microcirculation , vol.8 , pp. 153-168
    • Yanez-Mo, M.1
  • 75
    • 34447336931 scopus 로고    scopus 로고
    • Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions
    • Barreiro O., et al. Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions. Immunol. Rev. 218 (2007) 147-164
    • (2007) Immunol. Rev. , vol.218 , pp. 147-164
    • Barreiro, O.1
  • 76
    • 34548230927 scopus 로고    scopus 로고
    • Getting to the site of inflammation: the leukocyte adhesion cascade updated
    • Ley K., et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7 (2007) 678-689
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 678-689
    • Ley, K.1
  • 77
    • 0037114132 scopus 로고    scopus 로고
    • Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC
    • Mittelbrunn M., et al. Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J. Immunol. 169 (2002) 6691-6695
    • (2002) J. Immunol. , vol.169 , pp. 6691-6695
    • Mittelbrunn, M.1
  • 78
    • 0036144745 scopus 로고    scopus 로고
    • Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes
    • Kropshofer H., et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nat. Immunol. 3 (2002) 61-68
    • (2002) Nat. Immunol. , vol.3 , pp. 61-68
    • Kropshofer, H.1
  • 79
    • 33749506599 scopus 로고    scopus 로고
    • CDw78 defines MHC class II-peptide complexes that require Ii chain-dependent lysosomal trafficking, not localization to a specific tetraspanin membrane microdomain
    • Poloso N.J., et al. CDw78 defines MHC class II-peptide complexes that require Ii chain-dependent lysosomal trafficking, not localization to a specific tetraspanin membrane microdomain. J. Immunol. 177 (2006) 5451-5458
    • (2006) J. Immunol. , vol.177 , pp. 5451-5458
    • Poloso, N.J.1
  • 80
    • 33846052285 scopus 로고    scopus 로고
    • The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface
    • Unternaehrer J.J., et al. The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 234-239
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 234-239
    • Unternaehrer, J.J.1
  • 81
    • 59449085576 scopus 로고    scopus 로고
    • Imaging of plasmacytoid dendritic cell interactions with T cells
    • Mittelbrunn M., et al. Imaging of plasmacytoid dendritic cell interactions with T cells. Blood 113 (2009) 75-84
    • (2009) Blood , vol.113 , pp. 75-84
    • Mittelbrunn, M.1
  • 82
    • 60549086478 scopus 로고    scopus 로고
    • Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC
    • Sheng K.C., et al. Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC. Eur. J. Immunol. 39 (2009) 50-55
    • (2009) Eur. J. Immunol. , vol.39 , pp. 50-55
    • Sheng, K.C.1
  • 83
    • 20444404267 scopus 로고    scopus 로고
    • Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells
    • Douglass A.D., and Vale R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121 (2005) 937-950
    • (2005) Cell , vol.121 , pp. 937-950
    • Douglass, A.D.1    Vale, R.D.2
  • 84
    • 0345803938 scopus 로고    scopus 로고
    • The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow
    • Feigelson S.W., et al. The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J. Biol. Chem. 278 (2003) 51203-51212
    • (2003) J. Biol. Chem. , vol.278 , pp. 51203-51212
    • Feigelson, S.W.1
  • 85
    • 15944361837 scopus 로고    scopus 로고
    • Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation
    • Barreiro O., et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105 (2005) 2852-2861
    • (2005) Blood , vol.105 , pp. 2852-2861
    • Barreiro, O.1
  • 86
    • 0037166942 scopus 로고    scopus 로고
    • Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes
    • Barreiro O., et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157 (2002) 1233-1245
    • (2002) J. Cell Biol. , vol.157 , pp. 1233-1245
    • Barreiro, O.1
  • 87
    • 67349256860 scopus 로고    scopus 로고
    • Bringing up the rear: defining the roles of the uropod
    • Sanchez-Madrid F., and Serrador J.M. Bringing up the rear: defining the roles of the uropod. Nat. Rev. Mol. Cell Biol. 10 (2009) 353-359
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 353-359
    • Sanchez-Madrid, F.1    Serrador, J.M.2
  • 88
    • 59449104221 scopus 로고    scopus 로고
    • Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease
    • Belting M., and Wittrup A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J. Cell Biol. 183 (2008) 1187-1191
    • (2008) J. Cell Biol. , vol.183 , pp. 1187-1191
    • Belting, M.1    Wittrup, A.2
  • 89
    • 0032582538 scopus 로고    scopus 로고
    • Binding of hepatitis C virus to CD81
    • Pileri P., et al. Binding of hepatitis C virus to CD81. Science 282 (1998) 938-941
    • (1998) Science , vol.282 , pp. 938-941
    • Pileri, P.1
  • 90
    • 34147219730 scopus 로고    scopus 로고
    • Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry
    • Evans M.J., et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446 (2007) 801-805
    • (2007) Nature , vol.446 , pp. 801-805
    • Evans, M.J.1
  • 91
    • 43249112076 scopus 로고    scopus 로고
    • CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry
    • Harris H.J., et al. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J. Virol. 82 (2008) 5007-5020
    • (2008) J. Virol. , vol.82 , pp. 5007-5020
    • Harris, H.J.1
  • 93
    • 0037234454 scopus 로고    scopus 로고
    • Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity
    • Silvie O., et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat. Med. 9 (2003) 93-96
    • (2003) Nat. Med. , vol.9 , pp. 93-96
    • Silvie, O.1
  • 94
    • 33745041716 scopus 로고    scopus 로고
    • Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species
    • Silvie O., et al. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species. Cell. Microbiol. 8 (2006) 1134-1146
    • (2006) Cell. Microbiol. , vol.8 , pp. 1134-1146
    • Silvie, O.1
  • 95
    • 50849107688 scopus 로고    scopus 로고
    • Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection
    • Yalaoui S., et al. Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection. Cell Host Microbe 4 (2008) 283-292
    • (2008) Cell Host Microbe , vol.4 , pp. 283-292
    • Yalaoui, S.1
  • 96
    • 61449203893 scopus 로고    scopus 로고
    • Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains
    • Dreux M., et al. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog. 5 (2009) e1000310
    • (2009) PLoS Pathog. , vol.5
    • Dreux, M.1
  • 97
    • 33845802481 scopus 로고    scopus 로고
    • Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I
    • Kapadia S.B., et al. Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J. Virol. 81 (2007) 374-383
    • (2007) J. Virol. , vol.81 , pp. 374-383
    • Kapadia, S.B.1
  • 98
    • 67649303411 scopus 로고    scopus 로고
    • The association of CD81 with tetraspanin-enriched microdomains is not essential for hepatitis C virus entry
    • Rocha-Perugini V., et al. The association of CD81 with tetraspanin-enriched microdomains is not essential for hepatitis C virus entry. BMC Microbiol. 9 (2009) 111
    • (2009) BMC Microbiol. , vol.9 , pp. 111
    • Rocha-Perugini, V.1
  • 99
    • 33749509032 scopus 로고    scopus 로고
    • Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion
    • Gordon-Alonso M., et al. Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J. Immunol. 177 (2006) 5129-5137
    • (2006) J. Immunol. , vol.177 , pp. 5129-5137
    • Gordon-Alonso, M.1
  • 100
    • 63849314148 scopus 로고    scopus 로고
    • Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway
    • Izquierdo-Useros N., et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113 (2009) 2732-2741
    • (2009) Blood , vol.113 , pp. 2732-2741
    • Izquierdo-Useros, N.1
  • 101
    • 34547105037 scopus 로고    scopus 로고
    • Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains
    • Jolly C., and Sattentau Q.J. Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J. Virol. 81 (2007) 7873-7884
    • (2007) J. Virol. , vol.81 , pp. 7873-7884
    • Jolly, C.1    Sattentau, Q.J.2
  • 102
    • 37849037354 scopus 로고    scopus 로고
    • Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins
    • Sato K., et al. Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins. J. Virol. 82 (2008) 1021-1033
    • (2008) J. Virol. , vol.82 , pp. 1021-1033
    • Sato, K.1
  • 103
    • 63049133705 scopus 로고    scopus 로고
    • A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line
    • Grigorov B., et al. A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line. Retrovirology 6 (2009) 28
    • (2009) Retrovirology , vol.6 , pp. 28
    • Grigorov, B.1
  • 104
    • 43249130505 scopus 로고    scopus 로고
    • CD63 is not required for production of infectious human immunodeficiency virus type 1 in human macrophages
    • Ruiz-Mateos E., et al. CD63 is not required for production of infectious human immunodeficiency virus type 1 in human macrophages. J. Virol. 82 (2008) 4751-4761
    • (2008) J. Virol. , vol.82 , pp. 4751-4761
    • Ruiz-Mateos, E.1
  • 105
    • 33947496629 scopus 로고    scopus 로고
    • The inner loop of tetraspanins CD82 and CD81 mediates interactions with human T cell lymphotrophic virus type 1 Gag protein
    • Mazurov D., et al. The inner loop of tetraspanins CD82 and CD81 mediates interactions with human T cell lymphotrophic virus type 1 Gag protein. J. Biol. Chem. 282 (2007) 3896-3903
    • (2007) J. Biol. Chem. , vol.282 , pp. 3896-3903
    • Mazurov, D.1
  • 106
    • 53749105515 scopus 로고    scopus 로고
    • Clathrin- and caveolin-independent entry of human papillomavirus type 16 - involvement of tetraspanin-enriched microdomains (TEMs)
    • Spoden G., et al. Clathrin- and caveolin-independent entry of human papillomavirus type 16 - involvement of tetraspanin-enriched microdomains (TEMs). PLoS ONE 3 (2008) e3313
    • (2008) PLoS ONE , vol.3
    • Spoden, G.1
  • 107
    • 33745238967 scopus 로고    scopus 로고
    • Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1
    • Ho S.H., et al. Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J. Virol. 80 (2006) 6487-6496
    • (2006) J. Virol. , vol.80 , pp. 6487-6496
    • Ho, S.H.1
  • 108
    • 57749169272 scopus 로고    scopus 로고
    • Tetraspanins: push and pull in suppressing and promoting metastasis
    • Zoller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer 9 (2009) 40-55
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 40-55
    • Zoller, M.1
  • 109
    • 57749205047 scopus 로고    scopus 로고
    • Tetraspanins regulate ADAM10-mediated cleavage of TNF-α and epidermal growth factor
    • Arduise C., et al. Tetraspanins regulate ADAM10-mediated cleavage of TNF-α and epidermal growth factor. J. Immunol. 181 (2008) 7002-7013
    • (2008) J. Immunol. , vol.181 , pp. 7002-7013
    • Arduise, C.1
  • 110
    • 65249142254 scopus 로고    scopus 로고
    • Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis
    • Lafleur M.A., et al. Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol. Biol. Cell 20 (2009) 2030-2040
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2030-2040
    • Lafleur, M.A.1
  • 111
    • 35348894519 scopus 로고    scopus 로고
    • The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells
    • Ovalle S., et al. The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int. J. Cancer 121 (2007) 2140-2152
    • (2007) Int. J. Cancer , vol.121 , pp. 2140-2152
    • Ovalle, S.1
  • 112
    • 0033588545 scopus 로고    scopus 로고
    • Function of α3β1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2)
    • Sugiura T., and Berditchevski F. Function of α3β1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J. Cell Biol. 146 (1999) 1375-1389
    • (1999) J. Cell Biol. , vol.146 , pp. 1375-1389
    • Sugiura, T.1    Berditchevski, F.2
  • 113
    • 0034614938 scopus 로고    scopus 로고
    • The tetraspanin CD9 associates with transmembrane TGF-α and regulates TGF-α-induced EGF receptor activation and cell proliferation
    • Shi W., et al. The tetraspanin CD9 associates with transmembrane TGF-α and regulates TGF-α-induced EGF receptor activation and cell proliferation. J. Cell Biol. 148 (2000) 591-602
    • (2000) J. Cell Biol. , vol.148 , pp. 591-602
    • Shi, W.1
  • 114
    • 33846226473 scopus 로고    scopus 로고
    • Tetraspanins as regulators of protein trafficking
    • Berditchevski F., and Odintsova E. Tetraspanins as regulators of protein trafficking. Traffic 8 (2007) 89-96
    • (2007) Traffic , vol.8 , pp. 89-96
    • Berditchevski, F.1    Odintsova, E.2
  • 115
    • 0034710619 scopus 로고    scopus 로고
    • Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1
    • Odintsova E., et al. Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr. Biol. 10 (2000) 1009-1012
    • (2000) Curr. Biol. , vol.10 , pp. 1009-1012
    • Odintsova, E.1
  • 116
    • 0037466459 scopus 로고    scopus 로고
    • Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase
    • Takino T., et al. Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem. Biophys. Res. Commun. 304 (2003) 160-166
    • (2003) Biochem. Biophys. Res. Commun. , vol.304 , pp. 160-166
    • Takino, T.1
  • 117
    • 40449100704 scopus 로고    scopus 로고
    • A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane
    • Yoshida T., et al. A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic 9 (2008) 540-558
    • (2008) Traffic , vol.9 , pp. 540-558
    • Yoshida, T.1
  • 118
    • 0037144837 scopus 로고    scopus 로고
    • An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology
    • Kazarov A.R., et al. An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J. Cell Biol. 158 (2002) 1299-1309
    • (2002) J. Cell Biol. , vol.158 , pp. 1299-1309
    • Kazarov, A.R.1
  • 119
    • 58149150978 scopus 로고    scopus 로고
    • Probing the interaction of tetraspanin CD151 with integrin α3β1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin α3β1 complex
    • Yamada M., et al. Probing the interaction of tetraspanin CD151 with integrin α3β1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin α3β1 complex. Biochem. J. 415 (2008) 417-427
    • (2008) Biochem. J. , vol.415 , pp. 417-427
    • Yamada, M.1
  • 120
    • 0035861966 scopus 로고    scopus 로고
    • CD9 amino acids critical for upregulation of diphtheria toxin binding
    • Hasuwa H., et al. CD9 amino acids critical for upregulation of diphtheria toxin binding. Biochem. Biophys. Res. Commun. 289 (2001) 782-790
    • (2001) Biochem. Biophys. Res. Commun. , vol.289 , pp. 782-790
    • Hasuwa, H.1
  • 121
    • 0036333987 scopus 로고    scopus 로고
    • Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion
    • Zhu G.Z., et al. Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129 (2002) 1995-2002
    • (2002) Development , vol.129 , pp. 1995-2002
    • Zhu, G.Z.1
  • 122
    • 32044459101 scopus 로고    scopus 로고
    • Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments
    • Shoham T., et al. Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol. Cell. Biol. 26 (2006) 1373-1385
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1373-1385
    • Shoham, T.1
  • 123
    • 0042847300 scopus 로고    scopus 로고
    • EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells
    • Charrin S., et al. EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem. J. 373 (2003) 409-421
    • (2003) Biochem. J. , vol.373 , pp. 409-421
    • Charrin, S.1
  • 124
    • 33644820905 scopus 로고    scopus 로고
    • Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily
    • Seigneuret M. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys. J. 90 (2006) 212-227
    • (2006) Biophys. J. , vol.90 , pp. 212-227
    • Seigneuret, M.1
  • 125
    • 22744437388 scopus 로고    scopus 로고
    • Detergent-resistant membranes should not be identified with membrane rafts
    • Lichtenberg D., et al. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30 (2005) 430-436
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 430-436
    • Lichtenberg, D.1
  • 126
    • 0033551731 scopus 로고    scopus 로고
    • Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification
    • Oh P., and Schnitzer J.E. Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J. Biol. Chem. 274 (1999) 23144-23154
    • (1999) J. Biol. Chem. , vol.274 , pp. 23144-23154
    • Oh, P.1    Schnitzer, J.E.2
  • 127
    • 40849114530 scopus 로고    scopus 로고
    • Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2
    • Langhorst M.F., et al. Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur. J. Cell Biol. 87 (2008) 211-226
    • (2008) Eur. J. Cell Biol. , vol.87 , pp. 211-226
    • Langhorst, M.F.1
  • 128
    • 42649139207 scopus 로고    scopus 로고
    • Tetraspanin CD9 regulates β1 integrin activation and enhances cell motility to fibronectin via a PI-3 kinase-dependent pathway
    • Kotha J., et al. Tetraspanin CD9 regulates β1 integrin activation and enhances cell motility to fibronectin via a PI-3 kinase-dependent pathway. Exp. Cell Res. 314 (2008) 1811-1822
    • (2008) Exp. Cell Res. , vol.314 , pp. 1811-1822
    • Kotha, J.1
  • 129
    • 36749037222 scopus 로고    scopus 로고
    • A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9
    • Kovalenko O.V., et al. A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol. Cell. Proteomics 6 (2007) 1855-1867
    • (2007) Mol. Cell. Proteomics , vol.6 , pp. 1855-1867
    • Kovalenko, O.V.1
  • 130
    • 34948874257 scopus 로고    scopus 로고
    • Tetraspanin CD81 is required for the αvβ5-integrin-dependent particle-binding step of RPE phagocytosis
    • Chang Y., and Finnemann S.C. Tetraspanin CD81 is required for the αvβ5-integrin-dependent particle-binding step of RPE phagocytosis. J. Cell Sci. 120 (2007) 3053-3063
    • (2007) J. Cell Sci. , vol.120 , pp. 3053-3063
    • Chang, Y.1    Finnemann, S.C.2
  • 131
    • 58249088259 scopus 로고    scopus 로고
    • Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains
    • Protty M.B., et al. Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochem. J. 417 (2009) 391-400
    • (2009) Biochem. J. , vol.417 , pp. 391-400
    • Protty, M.B.1
  • 132
    • 34250792850 scopus 로고    scopus 로고
    • A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression
    • Kuhn S., et al. A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol. Cancer Res. 5 (2007) 553-567
    • (2007) Mol. Cancer Res. , vol.5 , pp. 553-567
    • Kuhn, S.1
  • 133
    • 0347993702 scopus 로고    scopus 로고
    • α3β1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPμ expression and cell-cell adhesion
    • Chattopadhyay N., et al. α3β1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPμ expression and cell-cell adhesion. J. Cell Biol. 163 (2003) 1351-1362
    • (2003) J. Cell Biol. , vol.163 , pp. 1351-1362
    • Chattopadhyay, N.1
  • 134
    • 42149159461 scopus 로고    scopus 로고
    • The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility
    • Lekishvili T., et al. The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 121 (2008) 685-694
    • (2008) J Cell Sci , vol.121 , pp. 685-694
    • Lekishvili, T.1
  • 135
    • 3843126411 scopus 로고    scopus 로고
    • CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells
    • Mantegazza A.R., et al. CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells. Blood 104 (2004) 1183-1190
    • (2004) Blood , vol.104 , pp. 1183-1190
    • Mantegazza, A.R.1
  • 136
    • 33845915636 scopus 로고    scopus 로고
    • Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production
    • Meyer-Wentrup F., et al. Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J. Immunol. 178 (2007) 154-162
    • (2007) J. Immunol. , vol.178 , pp. 154-162
    • Meyer-Wentrup, F.1
  • 137
    • 0035869540 scopus 로고    scopus 로고
    • CD36 associates with CD9 and integrins on human blood platelets
    • Miao W.M., et al. CD36 associates with CD9 and integrins on human blood platelets. Blood 97 (2001) 1689-1696
    • (2001) Blood , vol.97 , pp. 1689-1696
    • Miao, W.M.1
  • 138
    • 27644448904 scopus 로고    scopus 로고
    • MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes
    • Zilber M.T., et al. MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Blood 106 (2005) 3074-3081
    • (2005) Blood , vol.106 , pp. 3074-3081
    • Zilber, M.T.1
  • 139
    • 1542267725 scopus 로고    scopus 로고
    • Tetraspanins connect several types of Ig proteins: IgM is a novel component of the tetraspanin web on B-lymphoid cells
    • Le Naour F., et al. Tetraspanins connect several types of Ig proteins: IgM is a novel component of the tetraspanin web on B-lymphoid cells. Cancer Immunol. Immunother. 53 (2004) 148-152
    • (2004) Cancer Immunol. Immunother. , vol.53 , pp. 148-152
    • Le Naour, F.1
  • 140
    • 0037097563 scopus 로고    scopus 로고
    • C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors
    • Anzai N., et al. C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors. Blood 99 (2002) 4413-4421
    • (2002) Blood , vol.99 , pp. 4413-4421
    • Anzai, N.1
  • 141
    • 0346734131 scopus 로고    scopus 로고
    • The tetraspanin CD63 enhances the internalization of the H,K-ATPase α-subunit
    • Duffield A., et al. The tetraspanin CD63 enhances the internalization of the H,K-ATPase α-subunit. Proc. Natl. Acad. Sci. U. S. A 100 (2003) 15560-15565
    • (2003) Proc. Natl. Acad. Sci. U. S. A , vol.100 , pp. 15560-15565
    • Duffield, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.