메뉴 건너뛰기




Volumn 21, Issue 7, 2009, Pages 1797-1862

Discrete- and continuous-time probabilistic models and algorithms for inferring neuronal UP and DOWN states

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; BRAIN CORTEX; COMPUTER SIMULATION; CYTOLOGY; ELECTROENCEPHALOGRAPHY; HUMAN; MONTE CARLO METHOD; NERVE CELL; PHYSIOLOGY; RAT; STATISTICAL MODEL; TIME;

EID: 68349146850     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.06-08-799     Document Type: Article
Times cited : (33)

References (78)
  • 3
    • 0026355677 scopus 로고
    • A two-state Markov mixture model for a time series of epileptic seizure counts
    • Albert, P. S. (1991). A two-state Markov mixture model for a time series of epileptic seizure counts. Biometrics, 47, 1371-1381.
    • (1991) Biometrics , vol.47 , pp. 1371-1381
    • Albert, P.S.1
  • 4
    • 0000108918 scopus 로고    scopus 로고
    • Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo
    • Ball, F. G., Cai, Y., Kadane, J. B., & O'Hagan, A. (1999). Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo. Proceedings of the Royal Society of London, A455, 2879-2932.
    • (1999) Proceedings of the Royal Society of London , vol.A455 , pp. 2879-2932
    • Ball, F.G.1    Cai, Y.2    Kadane, J.B.3    O'Hagan, A.4
  • 5
    • 0018467809 scopus 로고
    • Bayesian results for the inverse gaussian distribution with an application
    • Bannerjee, A. K., & Bhattacharyya, G. K. (1979). Bayesian results for the inverse gaussian distribution with an application. Technometrics, 21(2), 247-251.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 247-251
    • Bannerjee, A.K.1    Bhattacharyya, G.K.2
  • 6
    • 0035970024 scopus 로고    scopus 로고
    • Construction and analysis of non-Poisson stimulus response models of neural spike train activity
    • Barbieri, R., Quirk, M. C., Frank, L. M., Wilson M. A., & Brown E. N. (2001). Construction and analysis of non-Poisson stimulus response models of neural spike train activity. Journal of Neuroscience Methods, 105, 25-37.
    • (2001) Journal of Neuroscience Methods , vol.105 , pp. 25-37
    • Barbieri, R.1    Quirk, M.C.2    Frank, L.M.3    Wilson, M.A.4    Brown, E.N.5
  • 7
    • 10044236847 scopus 로고    scopus 로고
    • Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions
    • Battaglia, F. P., Sutherland, G. R., & McNaughton, B. L. (2004). Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions. Learning and Memory, 11, 697-704.
    • (2004) Learning and Memory , vol.11 , pp. 697-704
    • Battaglia, F.P.1    Sutherland, G.R.2    McNaughton, B.L.3
  • 8
    • 0001862769 scopus 로고
    • An inequality and associated maximization technique in statistical estimation for probabilistic function of Markov processes
    • Baum, L. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic function of Markov processes. Inequalities, 3, 1-8.
    • (1972) Inequalities , vol.3 , pp. 1-8
    • Baum, L.1
  • 9
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41(1), 164-171.
    • (1970) Annals of Mathematical Statistics , vol.41 , Issue.1 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 10
    • 85012688561 scopus 로고
    • Princeton, NJ: Princeton University Press
    • Bellman, R. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.
    • (1957) Dynamic programming
    • Bellman, R.1
  • 11
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger, D. R. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cybernetics, 59, 189-200.
    • (1988) Biological Cybernetics , vol.59 , pp. 189-200
    • Brillinger, D.R.1
  • 12
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump MCMC proposal distributions (with discussion)
    • Brooks, S., Giudici, P., & Roberts, G. (2003). Efficient construction of reversible jump MCMC proposal distributions (with discussion). Journal of the Royal Society of London, Series B65(1), 3-56.
    • (2003) Journal of the Royal Society of London, Series B , vol.65 , Issue.1 , pp. 3-56
    • Brooks, S.1    Giudici, P.2    Roberts, G.3
  • 13
    • 77956690006 scopus 로고    scopus 로고
    • Theory of point processes for neural systems
    • Amsterdam: Elsevier C. C. Chow, B. Gutkin, D. Hansel, C. Meunier, & J. Dalibard (Eds.)
    • Brown, E. N. (2005). Theory of point processes for neural systems. In C. C. Chow, B. Gutkin, D. Hansel, C. Meunier, & J. Dalibard (Eds.), Methods and models in neurophysics (pp. 691-727). Amsterdam: Elsevier.
    • (2005) Methods and models in neurophysics , pp. 691-727
    • Brown, E.N.1
  • 15
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike data analysis
    • Brown, E. N., Barbieri, R., Ventura, V., Kass R. E., & Frank L. M. (2002). The time-rescaling theorem and its application to neural spike data analysis. Neural Comput., 14(2), 325-346.
    • (2002) Neural Comput , vol.14 , Issue.2 , pp. 325-346
    • Brown, E.N.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 16
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-the-art and future challenges
    • Brown, E. N., Kass R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience, 7, 456-461.
    • (2004) Nature Neuroscience , vol.7 , pp. 456-461
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 17
  • 19
    • 0026434453 scopus 로고
    • Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences
    • Chung, S. H., Krishnamurthy, V., & Moore, J. B. (1991). Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences. Philosophical Transactions of the Royal Society, London B, 357-384.
    • (1991) Philosophical Transactions of the Royal Society, London B , pp. 357-384
    • Chung, S.H.1    Krishnamurthy, V.2    Moore, J.B.3
  • 20
    • 47049130000 scopus 로고    scopus 로고
    • A recursive filter algorithm for state estimation from simultaneously recorded continuous-valued, point process and binary observations
    • Piscataway, NJ: IEEE Press
    • Coleman, T. P., & Brown, E. N. (2006). A recursive filter algorithm for state estimation from simultaneously recorded continuous-valued, point process and binary observations. In Proc. Asilomar Conference on Signals, Systems, and Computers (pp. 1949-1953). Piscataway, NJ: IEEE Press.
    • (2006) Proc. Asilomar Conference on Signals, Systems, and Computers , pp. 1949-1953
    • Coleman, T.P.1    Brown, E.N.2
  • 21
  • 24
    • 37649003473 scopus 로고    scopus 로고
    • Efficient estimation of hidden state dynamics from spike trains
    • Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Cambridge, MA: MIT Press
    • Danóczy, M. G., & Hahnloser, R. H. R. (2006). Efficient estimation of hidden state dynamics from spike trains. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 227-234), Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems , vol.18 , pp. 227-234
    • Danóczy, M.G.1    Hahnloser, R.H.R.2
  • 26
    • 0006657165 scopus 로고
    • Parameter estimation for Markov modulated Poisson processes via the EM algorithm with time discretization
    • Deng, L., & Mark, J. W. (1993). Parameter estimation for Markov modulated Poisson processes via the EM algorithm with time discretization. Telecommunication Systems, 1(1), 321-338.
    • (1993) Telecommunication Systems , vol.1 , Issue.1 , pp. 321-338
    • Deng, L.1    Mark, J.W.2
  • 31
    • 0015600423 scopus 로고
    • The Viterbi algorithm
    • Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3), 268-278.
    • (1973) Proceedings of the IEEE , vol.61 , Issue.3 , pp. 268-278
    • Forney, G.D.1
  • 32
    • 0026733479 scopus 로고
    • Maximum likelihood estimation and identification directly from single channel recordings
    • Fredkin, D. R., & Rice, J. A. (1992). Maximum likelihood estimation and identification directly from single channel recordings. Proceedings of the Royal Society of London, B249, 125-132.
    • (1992) Proceedings of the Royal Society of London , vol.B249 , pp. 125-132
    • Fredkin, D.R.1    Rice, J.A.2
  • 33
    • 33645712860 scopus 로고    scopus 로고
    • Single neurons can induce phase transitions of cortical recurrent networks with multiple internal states
    • Fujisawa, S., Matsuki, N., & Ikegaya, Y. (2005). Single neurons can induce phase transitions of cortical recurrent networks with multiple internal states. Cerebral Cortex, 16(5), 639-654.
    • (2005) Cerebral Cortex , vol.16 , Issue.5 , pp. 639-654
    • Fujisawa, S.1    Matsuki, N.2    Ikegaya, Y.3
  • 34
    • 0012762691 scopus 로고    scopus 로고
    • Hidden Markov modeling of simultaneously recorded cells in the associated cortex of behaving monkeys
    • Gat, I., Tishby, N., & Abeles, M. (1997). Hidden Markov modeling of simultaneously recorded cells in the associated cortex of behaving monkeys. Networks: Computation in Neural Systems, 8(3), 297-322.
    • (1997) Networks: Computation in Neural Systems , vol.8 , Issue.3 , pp. 297-322
    • Gat, I.1    Tishby, N.2    Abeles, M.3
  • 35
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Sciences, 7, 457-472.
    • (1992) Statistical Sciences , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 36
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7, 473-511.
    • (1992) Statistical Science , vol.7 , pp. 473-511
    • Geyer, C.J.1
  • 37
    • 0034170950 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Ghahramani, Z., & Hinton, G. E. (2000). Variational learning for switching state-space models. Neural Comput., 12(4), 831-864.
    • (2000) Neural Comput , vol.12 , Issue.4 , pp. 831-864
    • Ghahramani, Z.1    Hinton, G.E.2
  • 38
    • 0003860037 scopus 로고
    • Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). London: Chapman & Hall/CRC
    • Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1995). Markov chain Monte Carlo in practice. London: Chapman & Hall/CRC.
    • (1995) Markov chain Monte Carlo in practice
  • 39
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 40
    • 0141907306 scopus 로고    scopus 로고
    • Estimating hidden semi-Markov chains from discrete sequences
    • Guon, Y. (2003). Estimating hidden semi-Markov chains from discrete sequences. Journal of Computational Graphical Statistics, 12, 604-639.
    • (2003) Journal of Computational Graphical Statistics , vol.12 , pp. 604-639
    • Guon, Y.1
  • 41
    • 33646833761 scopus 로고    scopus 로고
    • Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition
    • Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26, 4535-4545.
    • (2006) Journal of Neuroscience , vol.26 , pp. 4535-4545
    • Haider, B.1    Duque, A.2    Hasenstaub, A.R.3    McCormick, D.A.4
  • 42
    • 34447529352 scopus 로고    scopus 로고
    • Enhancement of visual responsiveness by spontaneous local network activity in vivo
    • Haider, B., Duque, A., Hasentaub, A. R., Yu, Y., & McCormick, D. A. (2007). Enhancement of visual responsiveness by spontaneous local network activity in vivo. Journal of Neurophysiology, 97, 4186-4202.
    • (2007) Journal of Neurophysiology , vol.97 , pp. 4186-4202
    • Haider, B.1    Duque, A.2    Hasentaub, A.R.3    Yu, Y.4    McCormick, D.A.5
  • 44
    • 33845882729 scopus 로고    scopus 로고
    • Coordinated memory replay in the visual cortex and hippocampus during sleep
    • Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100-107.
    • (2007) Nature Neuroscience , vol.10 , Issue.1 , pp. 100-107
    • Ji, D.1    Wilson, M.A.2
  • 45
    • 36749103780 scopus 로고    scopus 로고
    • Natural stimuli evoke analysis dynamic sequences of states in sensory cortical ensembles
    • Jones, L. M., Fontanini, A., Sadacca, B. F., & Katz, D. B. (2007). Natural stimuli evoke analysis dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad.Sci.USA,104, 18772-18777.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 18772-18777
    • Jones, L.M.1    Fontanini, A.2    Sadacca, B.F.3    Katz, D.B.4
  • 46
    • 41849141186 scopus 로고    scopus 로고
    • Structure of spontaneous UP and DOWN transitions self-organizing in a cortical network model
    • doi:10.1371/journal.pcbi.1000022
    • Kang, S., Kitano, K., & Fukai, T. (2008). Structure of spontaneous UP and DOWN transitions self-organizing in a cortical network model. PLoS Computational Biology, 4(3): e1000022 doi:10.1371/journal.pcbi.1000022.
    • (2008) PLoS Computational Biology , vol.4 , Issue.3
    • Kang, S.1    Kitano, K.2    Fukai, T.3
  • 47
  • 48
    • 57149085744 scopus 로고    scopus 로고
    • Detecting neural-state transitions using hidden Markov models for motor cortical prostheses
    • Kemere, C., Santhanam, G., Yu, B. M., Afshar, A., Ryu, S. I., Meng, T. H., et al. (2008). Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. Journal of Neurophysiology, 100, 2441-2452.
    • (2008) Journal of Neurophysiology , vol.100 , pp. 2441-2452
    • Kemere, C.1    Santhanam, G.2    Yu, B.M.3    Afshar, A.4    Ryu, S.I.5    Meng, T.H.6
  • 49
    • 0026533334 scopus 로고
    • Exact likelihood evaluation in a Markov mixture model for time series of seizure counts
    • Le, N. D., Leroux, B. G., & Puterman, M. L. (1992). Exact likelihood evaluation in a Markov mixture model for time series of seizure counts. Biometrics, 48, 317-323.
    • (1992) Biometrics , vol.48 , pp. 317-323
    • Le, N.D.1    Leroux, B.G.2    Puterman, M.L.3
  • 53
    • 33845880862 scopus 로고    scopus 로고
    • Cortico-hippocampal interaction during up-down states and memory consolidation
    • Mehta, M. R. (2007). Cortico-hippocampal interaction during up-down states and memory consolidation. Nature Neuroscience, 10(1), 13-15.
    • (2007) Nature Neuroscience , vol.10 , Issue.1 , pp. 13-15
    • Mehta, M.R.1
  • 54
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243-262.
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 55
    • 72249121224 scopus 로고    scopus 로고
    • Statistical models for neural encoding, decoding, and optimal stimulus design
    • P. Cisek, T. Drew, & J. Kalaska (Eds.), Amsterdam: Elsevier
    • Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In P. Cisek, T. Drew, & J. Kalaska (Eds.), Computational neuroscience: Theoretical insights into brain function. Amsterdam: Elsevier.
    • (2007) Computational neuroscience: Theoretical insights into brain function
    • Paninski, L.1    Pillow, J.2    Lewi, J.3
  • 57
    • 42449130177 scopus 로고    scopus 로고
    • A mixed filter algorithm for cognitive state estimation from simultaneously recorded continuous-valued and binary measures of performance
    • Prerau, M. J., Smith, A. C., Eden, U. T., Yanike, M., Suzuki, W., & Brown, E. N. (2008). A mixed filter algorithm for cognitive state estimation from simultaneously recorded continuous-valued and binary measures of performance. Biological Cybernetics, 99(1), 1-14.
    • (2008) Biological Cybernetics , vol.99 , Issue.1 , pp. 1-14
    • Prerau, M.J.1    Smith, A.C.2    Eden, U.T.3    Yanike, M.4    Suzuki, W.5    Brown, E.N.6
  • 58
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 59
    • 0028671948 scopus 로고
    • Analysis, classification, and coding of multielectrode spike trains with hidden Markov models
    • Radons, G., Becker, J. D., Dülfer, B., & Krüger, J. (1994). Analysis, classification, and coding of multielectrode spike trains with hidden Markov models. Biological Cybernetics, 71(4), 359-373.
    • (1994) Biological Cybernetics , vol.71 , Issue.4 , pp. 359-373
    • Radons, G.1    Becker, J.D.2    Dülfer, B.3    Krüger, J.4
  • 60
    • 0034366269 scopus 로고    scopus 로고
    • Bayesian inference in hidden Markov models through reversible jump Markov chain Monte Carlo method
    • Robert, C. P., Rydén, T., & Titterington, D. M. (2000). Bayesian inference in hidden Markov models through reversible jump Markov chain Monte Carlo method. Journal of the Royal Statistical Society, Series B62, 57-75.
    • (2000) Journal of the Royal Statistical Society, Series , vol.B62 , pp. 57-75
    • Robert, C.P.1    Rydén, T.2    Titterington, D.M.3
  • 62
    • 0029730756 scopus 로고    scopus 로고
    • An EM algorithm for estimation in Markov-modulated Poisson processes
    • Rydén, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson processes. Computational Statistics and Data Analysis, 21, 431-447.
    • (1996) Computational Statistics and Data Analysis , vol.21 , pp. 431-447
    • Rydén, T.1
  • 63
    • 0033799036 scopus 로고    scopus 로고
    • Cellular and network mechanisms of rhythmic recurrent activity in neocortex
    • Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027-1034.
    • (2000) Nature Neuroscience , vol.3 , pp. 1027-1034
    • Sanchez-Vives, M.V.1    McCormick, D.A.2
  • 64
    • 0037452776 scopus 로고    scopus 로고
    • Communication between neocortex and hippocampus during sleep in rodents
    • Sirota, A., Csicsvari, J., Buhl, D., & Buzsáki, G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proc. Nat. Acad. Sci. USA, 100, 2065-2069.
    • (2003) Proc. Nat. Acad. Sci. USA , vol.100 , pp. 2065-2069
    • Sirota, A.1    Csicsvari, J.2    Buhl, D.3    Buzsáki, G.4
  • 65
    • 0038605051 scopus 로고    scopus 로고
    • Estimating a state-space model from point process observations
    • Smith A. C., & Brown E. N. (2003). Estimating a state-space model from point process observations. Neural Comput., 15, 965-991.
    • (2003) Neural Comput , vol.15 , pp. 965-991
    • Smith, A.C.1    Brown, E.N.2
  • 67
    • 34249681894 scopus 로고    scopus 로고
    • Continuous-index hidden Markov modelling of array CGH copy number data
    • Stjernqvist, S., Rydén, T., Sköld, M., & Staaf, J. (2007). Continuous-index hidden Markov modelling of array CGH copy number data. Bioinformatics, 23(8), 1006-1014.
    • (2007) Bioinformatics , vol.23 , Issue.8 , pp. 1006-1014
    • Stjernqvist, S.1    Rydén, T.2    Sköld, M.3    Staaf, J.4
  • 68
    • 0031260576 scopus 로고    scopus 로고
    • Application of inverse gaussian distribution to occupational exposure data
    • Takagi, K., Kumagai, S., Matsunaga, I., & Kusaka, Y. (1997). Application of inverse gaussian distribution to occupational exposure data. Annals of Occupational Hygiene, 41(5), 505-514.
    • (1997) Annals of Occupational Hygiene , vol.41 , Issue.5 , pp. 505-514
    • Takagi, K.1    Kumagai, S.2    Matsunaga, I.3    Kusaka, Y.4
  • 70
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and covariate effects
    • Truccolo, W., Eden U.T., Fellow, M., Donoghue, J. D., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and covariate effects. Journal of Neurophysiology, 93, 1074-1089.
    • (2005) Journal of Neurophysiology , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellow, M.3    Donoghue, J.D.4    Brown, E.N.5
  • 73
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of gaussian mixture models
    • Verbeek,J.J.,Vlassis,N.,&Kröse, B. (2003). Efficient greedy learning of gaussian mixture models. Neural Comput., 15(2), 469-485.
    • (2003) Neural Comput , vol.15 , Issue.2 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Kröse, B.3
  • 75
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimal decoding algorithm
    • Viterbi, J. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Transactions on Information Theory, 13, 260-269.
    • (1967) IEEE Transactions on Information Theory , vol.13 , pp. 260-269
    • Viterbi, J.1
  • 76
    • 33744967082 scopus 로고    scopus 로고
    • Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep
    • Volgushev, M., Chauvette, S., Mukovski, M., & Timofeev, I. (2006). Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep. Journal of Neuroscience, 26, 5665-5672.
    • (2006) Journal of Neuroscience , vol.26 , pp. 5665-5672
    • Volgushev, M.1    Chauvette, S.2    Mukovski, M.3    Timofeev, I.4
  • 77
    • 33745623168 scopus 로고    scopus 로고
    • Hippocampal slow oscillation: A novel EEG state and its coordination with ongoing neocortical activity
    • Wolansky, T., Clement, E. A., Peters, S. R., Palczak, M. A., & Dickson, C. T. (2006). Hippocampal slow oscillation: A novel EEG state and its coordination with ongoing neocortical activity. Journal of Neuroscience, 26, 6213-6229.
    • (2006) Journal of Neuroscience , vol.26 , pp. 6213-6229
    • Wolansky, T.1    Clement, E.A.2    Peters, S.R.3    Palczak, M.A.4    Dickson, C.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.