메뉴 건너뛰기




Volumn 5, Issue , 2005, Pages 2820-2825

Fast bayesian support vector machine parameter tuning with the Nystrom method

Author keywords

[No Author keywords available]

Indexed keywords

HYPERPARAMETERS; NYSTROM APPROXIMATION; NYSTROM METHOD; RUNNING TIME; SUPPORT VECTOR MACHINE (SVM);

EID: 33750113496     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2005.1556372     Document Type: Conference Paper
Times cited : (10)

References (15)
  • 2
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for Support Vector Machines: Evidence and predictive class probabilities
    • P. Sollich, "Bayesian methods for Support Vector Machines: Evidence and predictive class probabilities," Machine Learning, vol. 46, pp. 21-52, 2002.
    • (2002) Machine Learning , vol.46 , pp. 21-52
    • Sollich, P.1
  • 3
    • 84899032333 scopus 로고    scopus 로고
    • Probabilistic methods for Support Vector Machines
    • _, "Probabilistic methods for Support Vector Machines," in NIPS 12, 2000, pp. 349-355.
    • (2000) NIPS , vol.12 , pp. 349-355
  • 4
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for Support Vector Machines, Gaussian processes and other kernel classifiers
    • M. Seeger, "Bayesian model selection for Support Vector Machines, Gaussian processes and other kernel classifiers," in NIPS 12, 2000, pp. 603-609.
    • (2000) NIPS , vol.12 , pp. 603-609
    • Seeger, M.1
  • 5
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian process classification and SVM: Mean field results and leave-one-out estimator
    • A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press
    • M. Opper and O. Winther, "Gaussian process classification and SVM: Mean field results and leave-one-out estimator," in Advances in Large Margin Classifiers, A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000, pp. 43-65.
    • (2000) Advances in Large Margin Classifiers , pp. 43-65
    • Opper, M.1    Winther, O.2
  • 6
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean-field algorithms
    • _, "Gaussian processes for classification: Mean-field algorithms," Neural Comput., vol. 12, no. 11, pp. 2655-2684, 2000.
    • (2000) Neural Comput. , vol.12 , Issue.11 , pp. 2655-2684
  • 7
    • 0032594960 scopus 로고    scopus 로고
    • Moderating the outputs of Support Vector Machine classifiers
    • J. T. Y. Kwok, "Moderating the outputs of Support Vector Machine classifiers," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1018-1031, 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 1018-1031
    • Kwok, J.T.Y.1
  • 8
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to Support Vector Machines
    • _, "The evidence framework applied to Support Vector Machines," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1162-1173, 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.5 , pp. 1162-1173
  • 9
    • 0242288807 scopus 로고    scopus 로고
    • Model selection for support vector machine classification
    • C. Gold and P. Sollich, "Model selection for support vector machine classification," Neurocomputing, vol. 55, pp. 221-249, 2003.
    • (2003) Neurocomputing , vol.55 , pp. 221-249
    • Gold, C.1    Sollich, P.2
  • 10
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • University of Toronto
    • R. M. Neal, "Probabilistic inference using Markov chain Monte Carlo methods," University of Toronto, Tech. Rep. CRG-TR-93-1, 1993.
    • (1993) Tech. Rep. , vol.CRG-TR-93-1
    • Neal, R.M.1
  • 11
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nystrom method to speed up kernel machines
    • C. K. I. Williams and M. Seeger, "Using the Nystrom method to speed up kernel machines," in NIPS 13, 2001.
    • (2001) NIPS , vol.13
    • Williams, C.K.I.1    Seeger, M.2
  • 12
    • 0041494125 scopus 로고    scopus 로고
    • Efficient svm training using low-rank kernel representations
    • S. Fine and K. Scheinberg, "Efficient svm training using low-rank kernel representations," Journal of Machine Learning Research, vol. 2, pp. 243-264, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 13
    • 0042326376 scopus 로고    scopus 로고
    • Bayesian trigonometric support vector classifier
    • W. Chu, S. Keerthi, and O. C, "Bayesian trigonometric support vector classifier," Neural Computation, vol. 15, pp. 2227-2254, 2003.
    • (2003) Neural Computation , vol.15 , pp. 2227-2254
    • Chu, W.1    Keerthi, S.2    C, O.3
  • 14
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • Mar.
    • G. Rätsch, T. Onoda, and K.-R. Müller, "Soft margins for AdaBoost," Machine Learning, vol. 42, no. 3, pp. 287-320, Mar. 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Rätsch, G.1    Onoda, T.2    Müller, K.-R.3
  • 15
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for Support Vector Machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for Support Vector Machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.