-
2
-
-
0036163572
-
Bayesian methods for Support Vector Machines: Evidence and predictive class probabilities
-
P. Sollich, "Bayesian methods for Support Vector Machines: Evidence and predictive class probabilities," Machine Learning, vol. 46, pp. 21-52, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
3
-
-
84899032333
-
Probabilistic methods for Support Vector Machines
-
_, "Probabilistic methods for Support Vector Machines," in NIPS 12, 2000, pp. 349-355.
-
(2000)
NIPS
, vol.12
, pp. 349-355
-
-
-
4
-
-
84898947199
-
Bayesian model selection for Support Vector Machines, Gaussian processes and other kernel classifiers
-
M. Seeger, "Bayesian model selection for Support Vector Machines, Gaussian processes and other kernel classifiers," in NIPS 12, 2000, pp. 603-609.
-
(2000)
NIPS
, vol.12
, pp. 603-609
-
-
Seeger, M.1
-
5
-
-
0002755771
-
Gaussian process classification and SVM: Mean field results and leave-one-out estimator
-
A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press
-
M. Opper and O. Winther, "Gaussian process classification and SVM: Mean field results and leave-one-out estimator," in Advances in Large Margin Classifiers, A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000, pp. 43-65.
-
(2000)
Advances in Large Margin Classifiers
, pp. 43-65
-
-
Opper, M.1
Winther, O.2
-
6
-
-
0034320350
-
Gaussian processes for classification: Mean-field algorithms
-
_, "Gaussian processes for classification: Mean-field algorithms," Neural Comput., vol. 12, no. 11, pp. 2655-2684, 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.11
, pp. 2655-2684
-
-
-
7
-
-
0032594960
-
Moderating the outputs of Support Vector Machine classifiers
-
J. T. Y. Kwok, "Moderating the outputs of Support Vector Machine classifiers," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1018-1031, 1999.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.5
, pp. 1018-1031
-
-
Kwok, J.T.Y.1
-
8
-
-
0034271876
-
The evidence framework applied to Support Vector Machines
-
_, "The evidence framework applied to Support Vector Machines," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1162-1173, 2000.
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.5
, pp. 1162-1173
-
-
-
9
-
-
0242288807
-
Model selection for support vector machine classification
-
C. Gold and P. Sollich, "Model selection for support vector machine classification," Neurocomputing, vol. 55, pp. 221-249, 2003.
-
(2003)
Neurocomputing
, vol.55
, pp. 221-249
-
-
Gold, C.1
Sollich, P.2
-
10
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods
-
University of Toronto
-
R. M. Neal, "Probabilistic inference using Markov chain Monte Carlo methods," University of Toronto, Tech. Rep. CRG-TR-93-1, 1993.
-
(1993)
Tech. Rep.
, vol.CRG-TR-93-1
-
-
Neal, R.M.1
-
11
-
-
84899010839
-
Using the Nystrom method to speed up kernel machines
-
C. K. I. Williams and M. Seeger, "Using the Nystrom method to speed up kernel machines," in NIPS 13, 2001.
-
(2001)
NIPS
, vol.13
-
-
Williams, C.K.I.1
Seeger, M.2
-
12
-
-
0041494125
-
Efficient svm training using low-rank kernel representations
-
S. Fine and K. Scheinberg, "Efficient svm training using low-rank kernel representations," Journal of Machine Learning Research, vol. 2, pp. 243-264, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
13
-
-
0042326376
-
Bayesian trigonometric support vector classifier
-
W. Chu, S. Keerthi, and O. C, "Bayesian trigonometric support vector classifier," Neural Computation, vol. 15, pp. 2227-2254, 2003.
-
(2003)
Neural Computation
, vol.15
, pp. 2227-2254
-
-
Chu, W.1
Keerthi, S.2
C, O.3
-
14
-
-
0342502195
-
Soft margins for AdaBoost
-
Mar.
-
G. Rätsch, T. Onoda, and K.-R. Müller, "Soft margins for AdaBoost," Machine Learning, vol. 42, no. 3, pp. 287-320, Mar. 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
15
-
-
0036161011
-
Choosing multiple parameters for Support Vector Machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for Support Vector Machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
|