메뉴 건너뛰기




Volumn 2009, Issue , 2009, Pages

Modelling transcriptional regulation with a mixture of factor analyzers and variational bayesian expectation maximization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 68149168023     PISSN: 16874145     EISSN: 16874153     Source Type: Journal    
DOI: 10.1155/2009/601068     Document Type: Article
Times cited : (3)

References (55)
  • 1
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker H. J., Li H., Siggia E. D., Regulatory element detection using correlation with expression Nature Genetics 2001 27 2 167 171
    • (2001) Nature Genetics , vol.27 , Issue.2 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 3
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • Beer M. A., Tavazoie S., Predicting gene expression from sequence Cell 2004 117 2 185 198
    • (2004) Cell , vol.117 , Issue.2 , pp. 185-198
    • Beer, M.A.1    Tavazoie, S.2
  • 4
    • 1842455232 scopus 로고    scopus 로고
    • Regression trees for regulatory element identification
    • Phuong T. M., Lee D., Lee K. H., Regression trees for regulatory element identification Bioinformatics 2004 20 5 750 757
    • (2004) Bioinformatics , vol.20 , Issue.5 , pp. 750-757
    • Phuong, T.M.1    Lee, D.2    Lee, K.H.3
  • 5
    • 2442446708 scopus 로고    scopus 로고
    • Genome-wide discovery of transcriptional modules from DNA sequence and gene expression
    • Segal E., Yelensky R., Koller D., Genome-wide discovery of transcriptional modules from DNA sequence and gene expression Bioinformatics 2003 19 supplement 1 i273 i282
    • (2003) Bioinformatics , vol.19 , Issue.1 SUPPL.
    • Segal, E.1    Yelensky, R.2    Koller, D.3
  • 8
    • 32144445039 scopus 로고    scopus 로고
    • A bi-dimensional regression tree approach to the modeling of gene expression regulation
    • Ruan J., Zhang W., A bi-dimensional regression tree approach to the modeling of gene expression regulation Bioinformatics 2006 22 3 332 340
    • (2006) Bioinformatics , vol.22 , Issue.3 , pp. 332-340
    • Ruan, J.1    Zhang, W.2
  • 9
    • 0033657261 scopus 로고    scopus 로고
    • Principal components analysis to summarize microarray experiments: application to sporulation time series
    • Raychaudhuri S., Stuart J. M., Altman R. B., Principal components analysis to summarize microarray experiments: application to sporulation time series Pacific Symposium on Biocomputing 2000 5 455 466
    • (2000) Pacific Symposium on Biocomputing , vol.5 , pp. 455-466
    • Raychaudhuri, S.1    Stuart, J.M.2    Altman, R.B.3
  • 10
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent coponent analysis
    • Liebermeister W., Linear modes of gene expression determined by independent coponent analysis Bioinformatics 2002 18 1 51 60
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 51-60
    • Liebermeister, W.1
  • 13
    • 4544352942 scopus 로고    scopus 로고
    • Transcriptional regulatory code of a eukaryotic genome
    • Harbison C. T., Gordon D. B., Lee T. I., Transcriptional regulatory code of a eukaryotic genome Nature 2004 430 7004 99 104
    • (2004) Nature , vol.430 , Issue.7004 , pp. 99-104
    • Harbison, C.T.1    Gordon, D.B.2    Lee, T.I.3
  • 15
    • 0034628901 scopus 로고    scopus 로고
    • Computational identification of cis -regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae
    • Hughes J. D., Estep P. W., Tavazoie S., Church G. M., Computational identification of cis -regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae Journal of Molecular Biology 2000 296 5 1205 1214
    • (2000) Journal of Molecular Biology , vol.296 , Issue.5 , pp. 1205-1214
    • Hughes, J.D.1    Estep, P.W.2    Tavazoie, S.3    Church, G.M.4
  • 16
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • Sabatti C., James G. M., Bayesian sparse hidden components analysis for transcription regulation networks Bioinformatics 2006 22 6 739 746
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 739-746
    • Sabatti, C.1    James, G.M.2
  • 17
    • 33751008680 scopus 로고    scopus 로고
    • Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities
    • Sanguinetti G., Lawrence N. D., Rattray M., Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities Bioinformatics 2006 22 22 2775 2781
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2775-2781
    • Sanguinetti, G.1    Lawrence, N.D.2    Rattray, M.3
  • 18
    • 33947409985 scopus 로고    scopus 로고
    • Factor analysis for gene regulatory networks and transcription factor activity profiles
    • article 61
    • Pournara I., Wernisch L., Factor analysis for gene regulatory networks and transcription factor activity profiles BMC Bioinformatics 2007 8, article 61 1 20
    • (2007) BMC Bioinformatics , vol.8 , pp. 1-20
    • Pournara, I.1    Wernisch, L.2
  • 21
    • 38049123624 scopus 로고    scopus 로고
    • Identification of tissue-specific cis -regulatory modules based on interactions between transcription factors
    • article 437
    • Yu X., Lin J., Zack D. J., Qian J., Identification of tissue-specific cis -regulatory modules based on interactions between transcription factors BMC Bioinformatics 2007 8, article 437 1 13
    • (2007) BMC Bioinformatics , vol.8 , pp. 1-13
    • Yu, X.1    Lin, J.2    Zack, D.J.3    Qian, J.4
  • 22
    • 23744491001 scopus 로고    scopus 로고
    • Predicting transcription factor activities from combined analysis of microarray and chip data: a partial least squares approach
    • artcle 23
    • Boulesteix A.-L., Strimmer K., Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach Theoretical Biology Medical Modelling 2005 2, article 23 1 12
    • (2005) Theoretical Biology & Medical Modelling , vol.2 , pp. 1-12
    • Boulesteix, A.-L.1    Strimmer, K.2
  • 24
    • 0003744820 scopus 로고    scopus 로고
    • The EM algorithm for mixtures of factor analyzers
    • Department of Computer Science, University of Toronto Toronto, Canada
    • Ghahramani Z., Hinton G. E., The EM algorithm for mixtures of factor analyzers 1996 CRG-TR-96-1 Toronto, Canada Department of Computer Science, University of Toronto
    • (1996) Tech. Rep. CRG-TR-96-1
    • Ghahramani, Z.1    Hinton, G.E.2
  • 25
    • 68149130107 scopus 로고    scopus 로고
    • Lyngby, Denmark Informatics and Mathematical Modelling, Technical University of Denmark
    • Nielsen F. B., Variational approach to factor analysis and related models, M.S. thesis 2004 Lyngby, Denmark Informatics and Mathematical Modelling, Technical University of Denmark. http://www2.imm.dtu.dk/pubdb/views/ publicationdetails.php?id=3182
    • (2004) Variational approach to factor analysis and related models, M.S. thesis
    • Nielsen, F.B.1
  • 26
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • Solla S. A. Leen T. K. Müller K.-R., The MIT Press Cambridge, Mass, USA
    • Ghahramani Z., Beal M. J., Solla S. A., Leen T. K., Müller K.-R., Variational inference for Bayesian mixtures of factor analysers Advances in Neural Information Processing Systems 1999 Cambridge, Mass, USA The MIT Press 449 455
    • (1999) Advances in Neural Information Processing Systems , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 27
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the large p, small n paradigm
    • Oxford University Press Oxford, UK
    • West M., Bayesian factor regression models in the large p, small n paradigm Bayesian Statistics 2003 7 Oxford, UK Oxford University Press 733 742
    • (2003) Bayesian Statistics , vol.7 , pp. 733-742
    • West, M.1
  • 28
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t -distribution
    • McLachlan G. J., Bean R. W., Ben-Tovim Jones L., Extension of the mixture of factor analyzers model to incorporate the multivariate t -distribution Computational Statistics Data Analysis 2007 51 11 5327 5338
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.11 , pp. 5327-5338
    • Mclachlan, G.J.1    Bean, R.W.2    Ben-Tovim Jones, L.3
  • 29
    • 11244346557 scopus 로고    scopus 로고
    • Variance stabilization applied to microarray data calibration and to the quantification of differential expression
    • Huber W., von Heydebreck A., Sltmann H., Poustka A., Vingron M., Variance stabilization applied to microarray data calibration and to the quantification of differential expression Bioinformatics 2002 18 supplement 1 S96 S104
    • (2002) Bioinformatics , vol.18 , Issue.1 SUPPL.
    • Huber, W.1    Von Heydebreck, A.2    Sültmann, H.3    Poustka, A.4    Vingron, M.5
  • 30
    • 0037262840 scopus 로고    scopus 로고
    • Mixtures of factor analysers. Bayesian estimation and inference by stochastic simulation
    • Fokoué E., Titterington D. M., Mixtures of factor analysers. Bayesian estimation and inference by stochastic simulation Machine Learning 2003 50 1-2 73 94
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 73-94
    • Fokoué, E.1    Titterington, D.M.2
  • 31
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P. J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination Biometrika 1995 82 4 711 732
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 33
    • 0036578654 scopus 로고    scopus 로고
    • Topological and causal structure of the yeast transcriptional regulatory network
    • Guelzim N., Bottani S., Bourgine P., Kps F., Topological and causal structure of the yeast transcriptional regulatory network Nature Genetics 2002 31 1 60 63
    • (2002) Nature Genetics , vol.31 , Issue.1 , pp. 60-63
    • Guelzim, N.1    Bottani, S.2    Bourgine, P.3    Kepes, F.4
  • 34
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • Lee T. I., Rinaldi N. J., Robert F., Transcriptional regulatory networks in Saccharomyces cerevisiae Science 2002 298 5594 799 804
    • (2002) Science , vol.298 , Issue.5594 , pp. 799-804
    • Lee, T.I.1    Rinaldi, N.J.2    Robert, F.3
  • 35
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman P. T., Sherlock G., Zhang M. Q., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Molecular Biology of the Cell 1998 9 12 3273 3297
    • (1998) Molecular Biology of the Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 36
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch A. P., Spellman P. T., Kao C. M., Genomic expression programs in the response of yeast cells to environmental changes Molecular Biology of the Cell 2000 11 12 4241 4257
    • (2000) Molecular Biology of the Cell , vol.11 , Issue.12 , pp. 4241-4257
    • Gasch, A.P.1    Spellman, P.T.2    Kao, C.M.3
  • 37
    • 3142536716 scopus 로고    scopus 로고
    • Exploration of essential gene functions via titratable promoter alleles
    • Mnaimneh S., Davierwala A. P., Haynes J., Exploration of essential gene functions via titratable promoter alleles Cell 2004 118 1 31 44
    • (2004) Cell , vol.118 , Issue.1 , pp. 31-44
    • Mnaimneh, S.1    Davierwala, A.P.2    Haynes, J.3
  • 38
    • 33644873683 scopus 로고    scopus 로고
    • The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae
    • Teixeira M. C., Monteiro P., Jain P., The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae Nucleic Acids Research 2006 34, database issue D446 D451
    • (2006) Nucleic Acids Research , vol.34
    • Teixeira, M.C.1    Monteiro, P.2    Jain, P.3
  • 39
    • 34250922831 scopus 로고
    • The varimax criterion for analytic rotation in factor analysis
    • Kaiser H. F., The varimax criterion for analytic rotation in factor analysis Psychometrika 1958 23 3 187 200
    • (1958) Psychometrika , vol.23 , Issue.3 , pp. 187-200
    • Kaiser, H.F.1
  • 40
    • 44349190399 scopus 로고    scopus 로고
    • Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data
    • Chang C., Ding Z., Hung Y. S., Fung P. C. W., Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data Bioinformatics 2008 24 11 1349 1358
    • (2008) Bioinformatics , vol.24 , Issue.11 , pp. 1349-1358
    • Chang, C.1    Ding, Z.2    Hung, Y.S.3    Fung, P.C.W.4
  • 41
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: a comparative review
    • Cowles M. K., Carlin B. P., Markov chain Monte Carlo convergence diagnostics: a comparative review Journal of the American Statistical Association 1996 91 434 883 904
    • (1996) Journal of the American Statistical Association , vol.91 , Issue.434 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 44
    • 0036012349 scopus 로고    scopus 로고
    • Plaid models for gene expression data
    • Lazzeroni L., Owen A., Plaid models for gene expression data Statistica Sinica 2002 12 1 61 86
    • (2002) Statistica Sinica , vol.12 , Issue.1 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.2
  • 47
    • 33745622100 scopus 로고    scopus 로고
    • An improved statistic for detecting over-represented gene ontology annotations in gene sets
    • Apostolico A. Guerra C. Istrail S. Pevzner P.A. Waterman M.S. Lecture Notes in Computer Science Springer Venice, Italy April
    • Grossmann S., Bauer S., Robinson P. N., Vingron M., Apostolico A., Guerra C., Istrail S., Pevzner P. A., Waterman M. S., An improved statistic for detecting over-represented gene ontology annotations in gene sets 3909 Proceedings of the 10th Annual International Conference on Research in Computational Molecular Biology (RECOMB 06) April 2006 Venice, Italy Springer 85 98 Lecture Notes in Computer Science
    • (2006) Proceedings of the 10th Annual International Conference on Research in Computational Molecular Biology (RECOMB 06) , vol.3909 , pp. 85-98
    • Grossmann, S.1    Bauer, S.2    Robinson, P.N.3    Vingron, M.4
  • 49
    • 43049097125 scopus 로고    scopus 로고
    • Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
    • Grzegorczyk M., Husmeier D., Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move Machine Learning 2008 71 2-3 265 305
    • (2008) Machine Learning , vol.71 , Issue.2-3 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 50
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • Jasra A., Holmes C. C., Stephens D. A., Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling Statistical Science 2005 20 1 50 67
    • (2005) Statistical Science , vol.20 , Issue.1 , pp. 50-67
    • Jasra, A.1    Holmes, C.C.2    Stephens, D.A.3
  • 51
    • 6344293555 scopus 로고    scopus 로고
    • Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression
    • Kim T. S., Kim H. Y., Yoon J. H., Kang H. S., Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression Molecular and Cellular Biology 2004 24 21 9542 9556
    • (2004) Molecular and Cellular Biology , vol.24 , Issue.21 , pp. 9542-9556
    • Kim, T.S.1    Kim, H.Y.2    Yoon, J.H.3    Kang, H.S.4
  • 52
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cells functional organization
    • Barabsi A.-L., Oltvai Z. N., Network biology: understanding the cells functional organization Nature Reviews Genetics 2004 5 2 101 113
    • (2004) Nature Reviews Genetics , vol.5 , Issue.2 , pp. 101-113
    • Barabási, A.L.1    Oltvai, Z.N.2
  • 53
    • 14344256958 scopus 로고    scopus 로고
    • Hierarchical dirichlet processes
    • Berkeley, Calif, USA Department of Statistics, University of California
    • Teh Y. W., Jordan M. I., Beal M. J., Blei D. M., Hierarchical dirichlet processes 2004 653 Berkeley, Calif, USA Department of Statistics, University of California
    • (2004) Tech. Rep. 653
    • Teh, Y.W.1    Jordan, M.I.2    Beal, M.J.3    Blei, D.M.4
  • 55
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • Kuhn H. W., The Hungarian method for the assignment problem Naval Research Logistics 1955 2 1-2 83 97
    • (1955) Naval Research Logistics , vol.2 , Issue.12 , pp. 83-97
    • Kuhn, H.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.