-
3
-
-
34948911451
-
Assessment of classification models with small amounts of data
-
Brumen B., M.B. Juric, T. Welzer, I. Rozman, H. Jaakkola and A. Papadopoulos (2007). Assessment of classification models with small amounts of data. Informatica, 18(3), 343-362.
-
(2007)
Informatica
, vol.18
, Issue.3
, pp. 343-362
-
-
Brumen, B.1
Juric, M.B.2
Welzer, T.3
Rozman, I.4
Jaakkola, H.5
Papadopoulos, A.6
-
4
-
-
85041773239
-
Epi-convergence of stochastic optimization problems involving both random variables and measurability constraints approximations
-
and SOWG , 2006-323, 1-14
-
Chancelier, J.-Ph., and SOWG (2006). Epi-convergence of stochastic optimization problems involving both random variables and measurability constraints approximations. Rapport de recherche du CERMICS 2006-323, 1-14 (http://cermics.enpc.fr/reports).
-
(2006)
Rapport de recherche du CERMICS
-
-
Chancelier, J.-P.1
-
5
-
-
0036071370
-
On the mathematial foundations of learning
-
Cucker, F., and S. Smale (2001). On the mathematial foundations of learning. Bull. Amer. Math. Soc., 89(1), 1-49.
-
(2001)
Bull. Amer. Math. Soc
, vol.89
, Issue.1
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
6
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the biasvariance problem
-
Cucker, F., and S. Smale (2002). Best choices for regularization parameters in learning theory: on the biasvariance problem. Found. Comput. Math., 2(4), 413-428.
-
(2002)
Found. Comput. Math
, vol.2
, Issue.4
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
7
-
-
24944432318
-
Model selection for regularized least-squares algorithm in learning theory
-
De Vito, E., A. Caponnetto and L. Rosasco (2005). Model selection for regularized least-squares algorithm in learning theory. Found. Comput. Math., 5(1), 59-85.
-
(2005)
Found. Comput. Math
, vol.5
, Issue.1
, pp. 59-85
-
-
De Vito, E.1
Caponnetto, A.2
Rosasco, L.3
-
9
-
-
0003725571
-
-
North Holland & American Elsevier, Amsterdam, Oxford, New York
-
Ekeland, I., and R. Temam (1976). Convex Analysis and Variational Problems. North Holland & American Elsevier, Amsterdam, Oxford, New York.
-
(1976)
Convex Analysis and Variational Problems
-
-
Ekeland, I.1
Temam, R.2
-
11
-
-
33845608107
-
Some proposals for stochastic facility location models
-
Ermoliev, Y.M., and G. Leonardi (1982). Some proposals for stochastic facility location models. Mathematical Modelling, 3, 407-420.
-
(1982)
Mathematical Modelling
, vol.3
, pp. 407-420
-
-
Ermoliev, Y.M.1
Leonardi, G.2
-
13
-
-
0003624357
-
-
Springer-Verlag, New York, Berlin, Heidelberg
-
Gyorfi, L., M. Kohler, A. Krzyzak and H. Walk (2002). A Distribution Free Theory of Nonparametric Regression. Springer-Verlag, New York, Berlin, Heidelberg.
-
(2002)
A Distribution Free Theory of Nonparametric Regression
-
-
Gyorfi, L.1
Kohler, M.2
Krzyzak, A.3
Walk, H.4
-
15
-
-
0000406385
-
A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
-
Kimeldorf, G.S., and G. Wahba (1970). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat., 45, 495-502.
-
(1970)
Ann. Math. Stat
, vol.45
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
18
-
-
0001035413
-
On the method of bounded differences
-
Cambridge University Press
-
McDiarmid, C. (1989). On the method of bounded differences. Surveys in Combinatorics. Cambridge University Press.
-
(1989)
Surveys in Combinatorics
-
-
McDiarmid, C.1
-
19
-
-
33745655665
-
Learning theory: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
-
Mukherjee, S., P. Niyogi, T. Poggio and R. Rifkin (2006). Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Adv. Comput. Math., 25(1-3), 161-193.
-
(2006)
Adv. Comput. Math
, vol.25
, Issue.1-3
, pp. 161-193
-
-
Mukherjee, S.1
Niyogi, P.2
Poggio, T.3
Rifkin, R.4
-
20
-
-
67651226007
-
On convergence of kernel learning estimators
-
L. Sakalauskas, O.W. Weber and E.K. Zavadskas Eds, Institute of Mathematics and Informatics, Vilnius. pp
-
Norkin, V.I., and M.A. Keyzer (2008). On convergence of kernel learning estimators. In L. Sakalauskas, O.W. Weber and E.K. Zavadskas (Eds.), Proceedings of 20th EURO Mini Conference "Continuous Optimization and Knowledge-Based Technologies" (EUROPT-2008), Institute of Mathematics and Informatics, Vilnius. pp. 306-310.
-
(2008)
Proceedings of 20th EURO Mini Conference "Continuous Optimization and Knowledge-Based Technologies" (EUROPT-2008)
, pp. 306-310
-
-
Norkin, V.I.1
Keyzer, M.A.2
-
21
-
-
0242705996
-
The mathematics of learning: Dealing with data
-
Poggio, T., and S. Smale (2003). The mathematics of learning: dealing with data. Notices Amer. Math. Soc., 50(5), 537-544.
-
(2003)
Notices Amer. Math. Soc
, vol.50
, Issue.5
, pp. 537-544
-
-
Poggio, T.1
Smale, S.2
-
22
-
-
67651239342
-
On stochastic programming problems with decision rules
-
Izvestia AN ESSR. Physika. Math, pp
-
Raik, E. (1972). On stochastic programming problems with decision rules. In Proceedings of the Estonian Academy of Sciences. Physics. Mathematics, Vol. 21. Izvestia AN ESSR. Physika. Math., pp. 258-263.
-
(1972)
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics
, vol.21
, pp. 258-263
-
-
Raik, E.1
-
24
-
-
69649105932
-
Stochastic programming
-
Ruszczynski, A, and A. Shapiro Eds
-
Ruszczynski, A., and A. Shapiro (Eds.) (2003). Stochastic programming. Handbooks in OR & MS, 10.
-
(2003)
Handbooks in OR & MS
, vol.10
-
-
-
25
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
Scholkopf, B., and A.J. Smola (2002). Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA.
-
(2002)
Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
26
-
-
58049202752
-
-
Sergienko, I.V., A.M. Gupal and A.A. Vagis (2008). Bayesian approach, theory of empirical risk minimization. Comparative analysis. Cybernetics and Systems Analysis, 44(6), 822-831 (translated from Kibernetika i Sistemnyi Analiz, 2008, 6, 39-49).
-
Sergienko, I.V., A.M. Gupal and A.A. Vagis (2008). Bayesian approach, theory of empirical risk minimization. Comparative analysis. Cybernetics and Systems Analysis, 44(6), 822-831 (translated from Kibernetika i Sistemnyi Analiz, 2008, 6, 39-49).
-
-
-
-
28
-
-
27844555491
-
Shannon sampling II: Connections to learning theory
-
Smale, S., and D.X. Zhou (2005). Shannon sampling II: Connections to learning theory. Applied Computational Harmonic Analysis, 19(3), 285-302.
-
(2005)
Applied Computational Harmonic Analysis
, vol.19
, Issue.3
, pp. 285-302
-
-
Smale, S.1
Zhou, D.X.2
-
29
-
-
33745777631
-
Nonparametric quantile estimation
-
Takeuchi, I., Q.V. Le, T. Sears and A.J. Smola (2006). Nonparametric quantile estimation. Journal of Machine Learning Research, 7, 1231-1264.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1231-1264
-
-
Takeuchi, I.1
Le, Q.V.2
Sears, T.3
Smola, A.J.4
-
32
-
-
34250240458
-
Optimality conditions in stochastic programming
-
Yastremskii, A.I. (1980). Optimality conditions in stochastic programming. Cybernetics and Systems Analysis, 16(1), 154-158.
-
(1980)
Cybernetics and Systems Analysis
, vol.16
, Issue.1
, pp. 154-158
-
-
Yastremskii, A.I.1
|