메뉴 건너뛰기




Volumn , Issue , 2008, Pages 306-310

On convergence of kernel learning estimators

Author keywords

Consistency; Ill posedness regularization; Kernel learning; Quantile regression; Stochastic optimization

Indexed keywords

KNOWLEDGE BASED SYSTEMS; PARAMETERIZATION; STOCHASTIC SYSTEMS;

EID: 67651226007     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (15)
  • 4
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • Cucker, F. and Smale, S. 2002. Best choices for regularization parameters in learning theory: on the bias-variance problem, Foundations of Computational Mathematics 2(4): 413-428
    • (2002) Foundations of Computational Mathematics , vol.2 , Issue.4 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 5
    • 33845608107 scopus 로고
    • Some proposals for stochastic facility location models
    • Ermoliev, Y. M. and Leonardi, G. 1982. Some proposals for stochastic facility location models, Mathematical Modelling 3: 407-420.
    • (1982) Mathematical Modelling , vol.3 , pp. 407-420
    • Ermoliev, Y.M.1    Leonardi, G.2
  • 12
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling ii: Connections to learning theory
    • Smale, S. and Zhou, D. X. 2005. Shannon sampling II: Connections to learning theory, Applied Computational Harmonic Analysis 19(3): 285-302.
    • (2005) Applied Computational Harmonic Analysis , vol.19 , Issue.3 , pp. 285-302
    • Smale, S.1    Zhou, D.X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.