-
1
-
-
0036589259
-
-
Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev 2002, 102, 1359.
-
(2002)
Chem. Rev
, vol.102
, pp. 1359
-
-
Hassan, J.1
Sevignon, M.2
Gozzi, C.3
Schulz, E.4
Lemaire, M.5
-
2
-
-
65249146649
-
-
and references therein
-
Li, C. J. Acc. Chem. Res. 2009, 42, 335, and references therein.
-
(2009)
Acc. Chem. Res
, vol.42
, pp. 335
-
-
Li, C.J.1
-
3
-
-
33750438087
-
-
For Pd-catalyzed homocoupling, see: a
-
For Pd-catalyzed homocoupling, see: (a) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 14047
-
-
Hull, K.L.1
Lanni, E.L.2
Sanford, M.S.3
-
5
-
-
58149302870
-
-
(c) Xia, J. B.; Wang, X. Q.; You, S. L. J. Org. Chem. 2009, 74, 456.
-
(2009)
J. Org. Chem
, vol.74
, pp. 456
-
-
Xia, J.B.1
Wang, X.Q.2
You, S.L.3
-
6
-
-
34548550499
-
-
(d) Rong, Y.; Li, R.; Lu, W. Organometallics 2007, 26, 4376.
-
(2007)
Organometallics
, vol.26
, pp. 4376
-
-
Rong, Y.1
Li, R.2
Lu, W.3
-
7
-
-
85067385879
-
-
For stoichiometric Pd-mediated oxidative cross-coupling, see: a
-
For stoichiometric Pd-mediated oxidative cross-coupling, see: (a) Itahara, T. Synthesis 1979, 151.
-
(1979)
Synthesis
, pp. 151
-
-
Itahara, T.1
-
8
-
-
0141834095
-
-
(b) Itahara, T.; Kawasaki, K.; Ouseto, F. Bull. Chem. Soc. Jpn. 1984, 57, 3488.
-
(1984)
Bull. Chem. Soc. Jpn
, vol.57
, pp. 3488
-
-
Itahara, T.1
Kawasaki, K.2
Ouseto, F.3
-
11
-
-
34547960227
-
-
(b) Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.
-
(2007)
Org. Lett
, vol.9
, pp. 3137
-
-
Dwight, T.A.1
Rue, N.R.2
Charyk, D.3
Josselyn, R.4
DeBoef, B.5
-
12
-
-
35048815950
-
-
(c) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 12072
-
-
Stuart, D.R.1
Villemure, E.2
Fagnou, K.3
-
13
-
-
43449139728
-
-
(d) Potavathri, S.; Dumas, A. S.; Dwight, T. A.; Naumiec, G. R.; Hammann, J. M.; DeBoef, B. Tetrahedron Lett. 2008, 49, 4050.
-
(2008)
Tetrahedron Lett
, vol.49
, pp. 4050
-
-
Potavathri, S.1
Dumas, A.S.2
Dwight, T.A.3
Naumiec, G.R.4
Hammann, J.M.5
DeBoef, B.6
-
15
-
-
46849109148
-
-
(f) Liegault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org. Chem. 2008, 73, 5022.
-
(2008)
J. Org. Chem
, vol.73
, pp. 5022
-
-
Liegault, B.1
Lee, D.2
Huestis, M.P.3
Stuart, D.R.4
Fagnou, K.5
-
18
-
-
34250861444
-
-
(b) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 7666.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 7666
-
-
Cai, G.1
Fu, Y.2
Li, Y.3
Wan, X.4
Shi, Z.5
-
19
-
-
48749125749
-
-
(c) Brasche, G.; Garcia-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10, 2207.
-
(2008)
Org. Lett
, vol.10
, pp. 2207
-
-
Brasche, G.1
Garcia-Fortanet, J.2
Buchwald, S.L.3
-
20
-
-
33846396118
-
-
Li, R.; Jiang, L.; Lu, W. Organometallics 2006, 25, 5973.
-
(2006)
Organometallics
, vol.25
, pp. 5973
-
-
Li, R.1
Jiang, L.2
Lu, W.3
-
21
-
-
68549092330
-
-
The assumption that C-C coupling from D is fast is based on (1) calculations and experiments showing that coordination of BQ to Pd II(R)2 complexes dramatically lowers the barrier for C-C bond-forming reductive elimination and (2) the fact that observable Pd II(BQ) complexes are extremely rare in the literature (see ref 12c, presumably because they are highly reactive towards reductive elimination. See: (a) Pérez-Rodríguez, M, Braga, A. A. C, Garcia-Melchor, M, Pérez-Temprano, M. H, Casares, J. A, Ujaque, G, de Lera, A. R, Alvarez, R, Maseras, F, Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650
-
II(BQ) complexes are extremely rare in the literature (see ref 12c), presumably because they are highly reactive towards reductive elimination. See: (a) Pérez-Rodríguez, M.; Braga, A. A. C.; Garcia-Melchor, M.; Pérez-Temprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.; Alvarez, R.; Maseras, F.; Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650.
-
-
-
-
23
-
-
67650360815
-
-
DMSO (4 equiv) was added in each of the mechanistic experiments for consistency with the catalytic reactions (ref 6). Order studies revealed that the reaction is zeroth-order with respect to this additive (see the Supporting Information for details).
-
DMSO (4 equiv) was added in each of the mechanistic experiments for consistency with the catalytic reactions (ref 6). Order studies revealed that the reaction is zeroth-order with respect to this additive (see the Supporting Information for details).
-
-
-
-
24
-
-
67650354612
-
-
The control reaction in the absence of Pd showed <1% D incorporation.
-
The control reaction in the absence of Pd showed <1% D incorporation.
-
-
-
-
25
-
-
0001412629
-
-
BQ-promoted reductive elimination at PdII is well-precedented. For examples, see ref 9 and: (a) Temple, J. S, Riediker, M, Schwartz, J. J. Am. Chem. Soc. 1982, 104, 1310
-
II is well-precedented. For examples, see ref 9 and: (a) Temple, J. S.; Riediker, M.; Schwartz, J. J. Am. Chem. Soc. 1982, 104, 1310.
-
-
-
-
26
-
-
26944488411
-
-
(b) Backvall, J. E.; Bystrom, S. E.; Nordberg, R. E. J. Org. Chem. 1984, 49, 4619.
-
(1984)
J. Org. Chem
, vol.49
, pp. 4619
-
-
Backvall, J.E.1
Bystrom, S.E.2
Nordberg, R.E.3
-
27
-
-
0035354661
-
-
(c) Albeniz, A. C.; Espinet, P.; Martin-Ruiz, B. Chem. - Eur. J. 2001, 7, 2481.
-
(2001)
Chem. - Eur. J
, vol.7
, pp. 2481
-
-
Albeniz, A.C.1
Espinet, P.2
Martin-Ruiz, B.3
-
28
-
-
18744372130
-
-
(d) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 6970
-
-
Chen, M.S.1
Prabagaran, N.2
Labenz, N.A.3
White, M.C.4
-
29
-
-
30744445455
-
-
(e) Chen, X.; Li, J.; Hao, X.; Goodhue, C. E.; Yu, J. J. Am. Chem. Soc. 2006, 128, 78.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 78
-
-
Chen, X.1
Li, J.2
Hao, X.3
Goodhue, C.E.4
Yu, J.5
-
30
-
-
67650369590
-
-
Analysis of the crude reaction mixture did not show the presence of any hydroquinone, suggesting that the BQ plays a non-redox role in this transformation. The major Pd-containing product appears to be Pd black, which precipitates from solution over the course of the C-C coupling
-
Analysis of the crude reaction mixture did not show the presence of any hydroquinone, suggesting that the BQ plays a non-redox role in this transformation. The major Pd-containing product appears to be Pd black, which precipitates from solution over the course of the C-C coupling.
-
-
-
-
34
-
-
53549115668
-
-
(d) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 13285
-
-
Desai, L.V.1
Stowers, K.J.2
Sanford, M.S.3
-
35
-
-
31944442069
-
-
(a) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 1066
-
-
Garcia-Cuadrado, D.1
Braga, A.A.C.2
Maseras, F.3
Echavarren, A.M.4
-
36
-
-
33745959757
-
-
(b) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 8754
-
-
Lafrance, M.1
Rowley, C.N.2
Woo, T.K.3
Fagnou, K.4
-
37
-
-
50249118513
-
-
(c) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 10848
-
-
Gorelsky, S.I.1
Lapointe, D.2
Fagnou, K.3
-
39
-
-
20444370318
-
-
(b) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 8050
-
-
Lane, B.S.1
Brown, M.A.2
Sames, D.3
-
40
-
-
2342527678
-
-
(c) Park, C. H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159.
-
(2004)
Org. Lett
, vol.6
, pp. 1159
-
-
Park, C.H.1
Ryabova, V.2
Seregin, I.V.3
Sromek, A.W.4
Gevorgyan, V.5
-
41
-
-
26444441381
-
-
For calculations describing a related mechanism, see
-
For calculations describing a related mechanism, see: Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 13754
-
-
Davies, D.L.1
Donald, S.M.A.2
Macgregor, S.A.3
-
42
-
-
67650357415
-
-
Similar effects were observed in the catalytic reaction (using AgOAc as a stoichiometric oxidant). With 0.25 equiv of BQ, 10/9 = 1.45:1, while with 25 equiv of BQ, 10/9 = 1:1.2. This suggests that these stoichiometric mechanistic studies are relevant and applicable to the catalytic transformation.
-
Similar effects were observed in the catalytic reaction (using AgOAc as a stoichiometric oxidant). With 0.25 equiv of BQ, 10/9 = 1.45:1, while with 25 equiv of BQ, 10/9 = 1:1.2. This suggests that these stoichiometric mechanistic studies are relevant and applicable to the catalytic transformation.
-
-
-
|