메뉴 건너뛰기




Volumn 28, Issue 2, 2009, Pages 89-104

Microarray data analysis for differential expression: A tutorial

Author keywords

False discovery rate; Free microarray analysis software; Pairwise comparison for microarrays; Preprocessing data for microarrays

Indexed keywords

ALGORITHM; COMPARATIVE GENOMIC HYBRIDIZATION; COMPARATIVE STUDY; COMPUTER PROGRAM; DNA MICROARRAY; GENE EXPRESSION PROFILING; HUMAN; IMAGE PROCESSING; METHODOLOGY; REVIEW;

EID: 67650360437     PISSN: 07380658     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (16)

References (46)
  • 2
    • 47049121803 scopus 로고    scopus 로고
    • A tutorial in genetic epidemiology and some consideration in statistical modeling
    • Suárez E, Sariol CA, Burgette A, McLachlan G. A tutorial in genetic epidemiology and some consideration in statistical modeling. P R Health Sci J 2007;26:401-421.
    • (2007) P R Health Sci J , vol.26 , pp. 401-421
    • Suárez, E.1    Sariol, C.A.2    Burgette, A.3    McLachlan, G.4
  • 3
    • 34249992651 scopus 로고    scopus 로고
    • DNA microarray technology: Principles and applications to the study of neurological disorders
    • Ducray F, Honnorat J, Lachuer J. 2007. DNA microarray technology: principles and applications to the study of neurological disorders. Rev Neurol 2007;163:409-420.
    • (2007) Rev Neurol 2007 , vol.163 , pp. 409-420
    • Ducray, F.1    Honnorat, J.2    Lachuer, J.3
  • 4
    • 33847261476 scopus 로고    scopus 로고
    • The application of microarray technology to the analysis of the cancer genome
    • C owell JK, Hawthorn L. The application of microarray technology to the analysis of the cancer genome. Curr Mol Med 2007;7: 103-120.
    • (2007) Curr Mol Med , vol.7 , pp. 103-120
    • Cowell, J.K.1    Hawthorn, L.2
  • 5
    • 33846113818 scopus 로고    scopus 로고
    • Panmicrobial oligonucleotide array for diagnosis of infectious diseases
    • Palacios G, Quan PL, Jabado OJ, et al. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 2007;13:73-81.
    • (2007) Emerg Infect Dis , vol.13 , pp. 73-81
    • Palacios, G.1    Quan, P.L.2    Jabado, O.J.3
  • 6
    • 34547092919 scopus 로고    scopus 로고
    • Transcriptional activation of interferon stimulated genes but not of cytokine genes after primary infection of rhesus macaques with dengue virus type 1
    • Sariol CA, Munoz-Jordan JL, Abel K, et al. Transcriptional activation of interferon stimulated genes but not of cytokine genes after primary infection of rhesus macaques with dengue virus type 1. Clin vaccine immunol 2007;11:756-766.
    • (2007) Clin Vaccine Immunol , vol.11 , pp. 756-766
    • Munoz-Jordan, J.L.1    Abel, K.2
  • 7
    • 3543068702 scopus 로고    scopus 로고
    • Microarray platforms-comparisons and contrasts
    • Hardimann G. Microarray platforms-comparisons and contrasts. Pharmacogenomics 2004;5:487-502.
    • (2004) Pharmacogenomics , vol.5 , pp. 487-502
    • Hardimann, G.1
  • 9
    • 1242323130 scopus 로고    scopus 로고
    • Model-based analysis of olinucleotide array and issues in cDNA microarray analysis
    • Terry Speed (Editor) . USA, Chapman & Halls/CRC
    • C heng Li, Tseng G, Wing Hung. Model-based analysis of olinucleotide array and issues in cDNA microarray analysis. In Terry Speed (Editor), Statistical Analysis of Gene Expression Microarray Data. USA, Chapman & Halls/CRC, 2003.
    • (2003) Statistical Analysis of Gene Expression Microarray Data
    • Li, C.1    Tseng, G.2    Wing, H.3
  • 10
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • Allison D, Cui X, Page G., Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nature Rev Genet 2006;7:55-65.
    • (2006) Nature Rev Genet , vol.7 , pp. 55-65
    • Allison, D.1    Cui, X.2    Page, G.3    Sabripour, M.4
  • 16
    • 33646761944 scopus 로고    scopus 로고
    • Microarray analysis of gene expression: Considerations in data mining and statistical treatment
    • Verducci J, Melfi V, Lin Sh, et al Microarray analysis of gene expression: considerations in data mining and statistical treatment. Physiol Genomics 2006;25:355-363.
    • (2006) Physiol Genomics , vol.25 , pp. 355-363
    • Verducci, J.1    Melfi, V.2    Sh, L.3
  • 17
    • 9444283773 scopus 로고    scopus 로고
    • Gene expression profiling of pediatric acute myelogenous leukemia
    • Ross M, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004;104: 3679-3687.
    • (2004) Blood , vol.104 , pp. 3679-3687
  • 18
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad B, Irizarry R, Astrand M, Speed T. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003;19:185-93.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.1    Irizarry, R.2    Astrand, M.3    Speed, T.4
  • 19
    • 0036004157 scopus 로고    scopus 로고
    • Comparison of Methods for Image analysis on CDNA Microarray Data
    • Y ang Y, Buckley M, Dudoit S, Speed T. Comparison of Methods for Image analysis on CDNA Microarray Data. J Comput Graph Stat 2002;11:108-36.
    • (2002) J Comput Graph Stat , vol.11 , pp. 108-136
    • Yang, Y.1    Buckley, M.2    Dudoit, S.3    Speed, T.4
  • 20
    • 33847297935 scopus 로고    scopus 로고
    • Segmentation and intensity estimation of microarray images using a gamma-t mixture model
    • Baek J, Sook So Y, McLachlan G. Segmentation and intensity estimation of microarray images using a gamma-t mixture model. Bioinformatics 2007;23:458-465.
    • (2007) Bioinformatics , vol.23 , pp. 458-465
    • Sook So, Y.1    McLachlan, G.2
  • 25
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene list from microarray data
    • Jeffery I, Higgins D, and Culhane A. Comparison and evaluation of methods for generating differentially expressed gene list from microarray data. BMC Bioinformatics 2000;7:359.
    • (2000) BMC Bioinformatics , vol.7 , pp. 359
    • Jeffery, I.1    Higgins, D.2    Culhane, A.3
  • 26
    • 33751001004 scopus 로고    scopus 로고
    • Identifying differentially expressed genes in dye-swapped microarray experiments of small sample size
    • Lian I, Chang C, Liang Y, Fann C. Identifying differentially expressed genes in dye-swapped microarray experiments of small sample size. Comput Stat Data Anal 2007; 51:2602-2620.
    • (2007) Comput Stat Data Anal , vol.51 , pp. 2602-2620
    • Lian, I.1    Chang, C.2    Liang, Y.3    Fann, C.4
  • 27
    • 33745606461 scopus 로고    scopus 로고
    • A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays
    • McLachlan G, Bean R, Ben-Tovim Jones L. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 2006;22:1608-1615.
    • (2006) Bioinformatics , vol.22 , pp. 1608-1615
    • Ben-Tovim, J.L.1
  • 29
    • 6444220705 scopus 로고    scopus 로고
    • Mixture modelling for cluster analysis
    • McLachlan G, Chang S. Mixture modelling for cluster analysis. Stat Methods Med Res 2004;13:347-361.
    • (2004) Stat Methods Med Res , vol.13 , pp. 347-361
    • McLachlan, G.1    Chang, S.2
  • 30
    • 33750469672 scopus 로고    scopus 로고
    • Design of microarray experiments for genetics genomics studies
    • Bueno J, Gilmour S, Rosa G. Design of Microarray Experiments for Genetics Genomics Studies. Genetics 2006;174:945-957.
    • (2006) Genetics , vol.174 , pp. 945-957
    • Bueno, J.1    Gilmour, S.2    Rosa, G.3
  • 32
    • 0041423883 scopus 로고    scopus 로고
    • SAM thresholding and false dicovery rates for detecting differential gen expression in DNA mIcroarrays
    • Parmigiani G, Garrett E, Irizarry R, Zeger S. (editors) . USA, Springer
    • Storey J, Tibshirani R. SAM Thresholding and False Dicovery Rates for Detecting Differential Gen Expression in DNA MIcroarrays. In Parmigiani G, Garrett E, Irizarry R, Zeger S. (editors). The Analysis of Gene Expression Data: Methods and Software. USA, Springer, 2003.
    • (2003) The Analysis of Gene Expression Data: Methods and Software
    • Storey, J.1    Tibshirani, R.2
  • 33
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes mehtods for assessing differential expression in microarray experiments
    • Article 3
    • Smyth GK. Linear Models and Empirical Bayes Mehtods for Assessing Differential Expression in Microarray Experiments. Stat Appl Genet Mol Biol 2004;3:Article 3.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.K.1
  • 34
    • 33847325857 scopus 로고    scopus 로고
    • Flexible empirical bayes models for differential gene expression
    • Lo K, Gottardo R. Flexible empirical Bayes models for differential gene expression. Bioinformatics, 2007;23:328-335.
    • (2007) Bioinformatics , vol.23 , pp. 328-335
    • Lo, K.1    Gottardo, R.2
  • 35
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genomewide studies
    • Storey J, Tibshirani R. Statistical Significance for Genomewide studies. Proc Natl Acad Sci U S A 2003;100:9440-9445.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 9440-9445
    • Storey, J.1    Tibshirani, R.2
  • 36
    • 0037976559 scopus 로고    scopus 로고
    • Resampling-based multiple testing for microaray data analysis
    • Department of Statistics, University of California, Berkeley
    • G e Y, Dudoit S, Speed T. Resampling-based multiple testing for microaray data analysis. Technical Report # 633. Department of Statistics, University of California, Berkeley, 2003.
    • (2003) Technical Report # 633
    • Ge, Y.1    Dudoit, S.2    Speed, T.3
  • 37
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher V, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001;98: 5116-5121.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 5116-5121
    • Tusher, V.1    Tibshirani, R.2    Chu, G.3
  • 38
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful approach to Multiple Testing. J R Stat Soc Ser B 1995;57:289-300.
    • (1995) J R Stat Soc ser B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 39
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy A, Simon RM. Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting. J Natl Cancer Inst 2007;99:147-157.
    • (2007) J Natl Cancer Inst , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 40
    • 4444294164 scopus 로고    scopus 로고
    • Improving false discovery rate estimation
    • Pounds S, Cheng Ch. Improving false discovery rate estimation. Bioinformatics 2004;20:1737-1745.
    • (2004) Bioinformatics , vol.20 , pp. 1737-1745
    • Pounds, S.1    Cheng, C.2
  • 41
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A bayesian interpretation and the q-value
    • Storey J. The Positive False Discovery Rate: A Bayesian interpretation and the q-value. Ann Stat 2003;31:2013-2035.
    • (2003) Ann Stat , vol.31 , pp. 2013-2035
    • Storey, J.1
  • 43
    • 33749609070 scopus 로고    scopus 로고
    • Approximation power and sample size calculations with the Benjamini-Hochberg method
    • Article 8
    • F erreira J, Zwinderman A. Approximation Power and Sample Size Calculations with the Benjamini-Hochberg Method. Int J Biost 2006;5:Article 8,1-35.
    • (2006) Int J Biost , vol.5 , pp. 1-35
    • Ferreira, J.1    Zwinderman, A.2
  • 44
    • 4344593785 scopus 로고    scopus 로고
    • Power and sample size estimation in high dimensional biology
    • G adbury G, Page G, Edwards J, et al. Power and sample size estimation in high dimensional biology. Stat Methods Med Res 2004; 13:325-338.
    • (2004) Stat Methods Med Res , vol.13 , pp. 325-338
    • Gadbury, G.1    Page, G.2    Edwards, J.3
  • 45
    • 0037114470 scopus 로고    scopus 로고
    • Power and sample size for DNA microarray studies
    • Lee M, Whitmore G. Power and sample size for DNA microarray studies. Stat Med 2002;21:3543-3570.
    • (2002) Stat Med , vol.21 , pp. 3543-3570
    • Lee, M.1    Whitmore, G.2
  • 46
    • 21444454257 scopus 로고    scopus 로고
    • False discovery rate, sensitivity and sample size microarray studies
    • Pawitan Y, Michiels S, Koscielny S, et al. False discovery rate, sensitivity and sample size microarray studies. Bioinformatics 2005;21:3017-3324.
    • (2005) Bioinformatics , vol.21 , pp. 3017-3324
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.