메뉴 건너뛰기




Volumn 13, Issue 5, 2004, Pages 347-361

Mixture modelling for cluster analysis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANALYSIS OF VARIANCE; ARTICLE; CANCER SURVIVAL; CLUSTER ANALYSIS; DATA ANALYSIS; FACTORIAL ANALYSIS; MATHEMATICAL MODEL; PROBABILITY; PROSTATE CANCER; STATISTICAL ANALYSIS;

EID: 6444220705     PISSN: 09622802     EISSN: None     Source Type: Journal    
DOI: 10.1191/0962280204sm372ra     Document Type: Article
Times cited : (53)

References (36)
  • 8
    • 0345832327 scopus 로고    scopus 로고
    • On the choice of the number of blocks with the incremental EM algorithm for the fitting of normal mixtures
    • Ng, SK, McLachlan, GJ. On the choice of the number of blocks with the incremental EM algorithm for the fitting of normal mixtures. Statistics and Computing 2003; 13: 45-55.
    • (2003) Statistics and Computing , vol.13 , pp. 45-55
    • Ng, S.K.1    McLachlan, G.J.2
  • 10
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki C, Celeux G, Govaert G. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Computational Statistics and Data Analysis 2003; 41: 561-75.
    • (2003) Computational Statistics and Data Analysis , vol.41 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 12
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal 1998; 41: 578-88.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 13
    • 0038083042 scopus 로고
    • Classification and estimation in analysis of variance problems
    • Hartley HO, Rao JNK. Classification and estimation in analysis of variance problems. International Statistical Review 1968; 36: 141-47.
    • (1968) International Statistical Review , vol.36 , pp. 141-147
    • Hartley, H.O.1    Rao, J.N.K.2
  • 14
    • 0038885181 scopus 로고
    • On identifying the population of origin of each observation in a mixture of observations from two normal populations
    • John S. On identifying the population of origin of each observation in a mixture of observations from two normal populations. Technometrics 1970; 12: 553-63.
    • (1970) Technometrics , vol.12 , pp. 553-563
    • John, S.1
  • 15
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • Scott AJ, Symons MJ. Clustering methods based on likelihood ratio criteria. Biometrics 1971; 27: 387-97.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 16
    • 0001294055 scopus 로고
    • The classification and mixture maximum likelihood approaches to cluster analysis
    • Krishnaiah PR, Kanal L, eds. Amsterdam: North-Holland
    • McLachlan GJ. The classification and mixture maximum likelihood approaches to cluster analysis. In Krishnaiah PR, Kanal L, eds. Handbook of statistics. Volume 2. Amsterdam: North-Holland, 1982; 199-208.
    • (1982) Handbook of Statistics , vol.2 , pp. 199-208
    • McLachlan, G.J.1
  • 17
    • 0002344672 scopus 로고
    • Large-sample results for optimization-based clustering
    • Bryant PG. Large-sample results for optimization-based clustering. Journal of Classification 1991; 8: 31-44.
    • (1991) Journal of Classification , vol.8 , pp. 31-44
    • Bryant, P.G.1
  • 20
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan GJ. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics 1987; 36: 318-24.
    • (1987) Applied Statistics , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 21
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978; 6: 461-64.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • Amin A, Dori D, Pudil P, Freeman H, eds. Berlin: Springer-Verlag
    • McLachlan GJ, Peel D. Robust cluster analysis via mixtures of multivariate t-distributions. In Amin A, Dori D, Pudil P, Freeman H, eds. Lecture notes in computer science, Volume 1451. Berlin: Springer-Verlag, 1998; 658-66.
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 24
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t-distribution
    • Peel D. and McLachlan. GJ. Robust mixture modelling using the t-distribution. Statistics and Computing 2000; 10: 335-44.
    • (2000) Statistics and Computing , vol.10 , pp. 335-344
    • Peel, D.1    McLachlan, G.J.2
  • 25
    • 6444219549 scopus 로고    scopus 로고
    • Breakdown points of maximum likelihood-estimators of location-scale mixtures
    • in press
    • Hennig C. Breakdown points of maximum likelihood-estimators of location-scale mixtures. Annals of Statistics 2002; in press.
    • (2002) Annals of Statistics
    • Hennig, C.1
  • 26
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993; 49: 803-21.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 30
    • 0003744821 scopus 로고    scopus 로고
    • The EM algorithm for factor analyzers
    • Technical Report No. CRG-TR-96-1, Toronto: The University of Toronto
    • Ghahramani Z, Hinton GE. The EM algorithm for factor analyzers. Technical Report No. CRG-TR-96-1, Toronto: The University of Toronto, 1997.
    • (1997)
    • Ghahramani, Z.1    Hinton, G.E.2
  • 31
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping ME, Bishop CM. Mixtures of probabilistic principal component analysers. Neural Computation 1999; 11: 443-82.
    • (1999) Neural Computation , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 32
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm - An old folk song sung to a fast new tune (with discussion)
    • Meng XL, van Dyk D. The EM algorithm - an old folk song sung to a fast new tune (with discussion). Journal of the Royal Statistical Society B 1997; 59: 511-67.
    • (1997) Journal of the Royal Statistical Society B , vol.59 , pp. 511-567
    • Meng, X.L.1    van Dyk, D.2
  • 36
    • 0019216788 scopus 로고
    • The choice of treatment for cancer patients based on covariate information: Application to prostate cancer
    • Byar DP, Green SB. The choice of treatment for cancer patients based on covariate information: application to prostate cancer. Bulletin du Cancer (Paris) 1980; 67: 477-90.
    • (1980) Bulletin du Cancer (Paris) , vol.67 , pp. 477-490
    • Byar, D.P.1    Green, S.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.