메뉴 건너뛰기




Volumn 96, Issue 9, 2009, Pages 3772-3780

Force field bias in protein folding simulations

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CONFORMATIONAL TRANSITION; ENERGY; FORCE; HUMAN; MOLECULAR DYNAMICS; PROTEIN FOLDING; SIMULATION; CHEMICAL STRUCTURE; CHEMISTRY; COMPUTER PROGRAM; COMPUTER SIMULATION; PROTEIN SECONDARY STRUCTURE; TIME;

EID: 67650359927     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2009.02.033     Document Type: Article
Times cited : (172)

References (59)
  • 2
    • 34249807361 scopus 로고    scopus 로고
    • Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation
    • Lei, H., and Y. Duan. 2007. Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation. J. Phys. Chem. B. 111:5458-5463.
    • (2007) J. Phys. Chem. B , vol.111 , pp. 5458-5463
    • Lei, H.1    Duan, Y.2
  • 3
    • 0032561237 scopus 로고    scopus 로고
    • Pathways to a protein folding intermediate observed in a 1 microsecond simulation in aqueous solution
    • Duan, Y., and P. Kollman. 1998. Pathways to a protein folding intermediate observed in a 1 microsecond simulation in aqueous solution. Science. 282:740-744.
    • (1998) Science , vol.282 , pp. 740-744
    • Duan, Y.1    Kollman, P.2
  • 4
    • 0037174385 scopus 로고    scopus 로고
    • All-atom structure prediction and folding simulations of a stable protein
    • Simmerling, C., B. Strockbine, and A. E. Roitberg. 2002. All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 124:11258-11259.
    • (2002) J. Am. Chem. Soc , vol.124 , pp. 11258-11259
    • Simmerling, C.1    Strockbine, B.2    Roitberg, A.E.3
  • 5
    • 0037470691 scopus 로고    scopus 로고
    • Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution
    • Chowdhury, S., M. C. Lee, G. Xiong, and Y. Duan. 2003. Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution. J. Mol. Biol. 327:711-717.
    • (2003) J. Mol. Biol , vol.327 , pp. 711-717
    • Chowdhury, S.1    Lee, M.C.2    Xiong, G.3    Duan, Y.4
  • 6
    • 0036467163 scopus 로고    scopus 로고
    • Structure of Met-encephalin in explicit aqueous solution using replica exchange molecular dynamics
    • Sanbonmatsu, K. Y., and A. E. Garca. 2002. Structure of Met-encephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins. 46:225-234.
    • (2002) Proteins , vol.46 , pp. 225-234
    • Sanbonmatsu, K.Y.1    Garca, A.E.2
  • 7
    • 3042814557 scopus 로고    scopus 로고
    • Folding λ-repressor at its speed limit
    • Yang, W. Y., and M. Gruebele. 2004. Folding λ-repressor at its speed limit. Biophys. J. 87:596-608.
    • (2004) Biophys. J , vol.87 , pp. 596-608
    • Yang, W.Y.1    Gruebele, M.2
  • 10
    • 44949111351 scopus 로고    scopus 로고
    • Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins
    • Maragakis, P., K. Lindorff-Larsen, M. P. Eastwood, R. O. Dror, J. L. Klepeis, et al. 2008. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J. Phys. Chem. B. 112:6155-6158.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 6155-6158
    • Maragakis, P.1    Lindorff-Larsen, K.2    Eastwood, M.P.3    Dror, R.O.4    Klepeis, J.L.5
  • 11
    • 35648943228 scopus 로고    scopus 로고
    • Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece
    • Ensign, D. L., P. M. Kasson, and V. S. Pande. 2007. Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol. 374: 806-816.
    • (2007) J. Mol. Biol , vol.374 , pp. 806-816
    • Ensign, D.L.1    Kasson, P.M.2    Pande, V.S.3
  • 12
    • 43849093505 scopus 로고    scopus 로고
    • Tenmicrosecond MD simulation of a fast-folding WW domain
    • Freddolino, P. L., F. Liu, M. Gruebele, and K. Schulten. 2008. Tenmicrosecond MD simulation of a fast-folding WW domain. Biophys. J. 94:L75-L77.
    • (2008) Biophys. J , vol.94
    • Freddolino, P.L.1    Liu, F.2    Gruebele, M.3    Schulten, K.4
  • 13
    • 4444351490 scopus 로고    scopus 로고
    • Empirical force fields for biological macromolecules: Overview and issues
    • MacKerell, A. D. 2004. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25:1584-1604.
    • (2004) J. Comput. Chem , vol.25 , pp. 1584-1604
    • MacKerell, A.D.1
  • 14
    • 33846314325 scopus 로고    scopus 로고
    • Force field effects on a β-sheet protein domain structure in thermal unfolding simulations
    • Wang, T., and R. Wade. 2006. Force field effects on a β-sheet protein domain structure in thermal unfolding simulations. J. Chem. Theory Comput. 2:140-148.
    • (2006) J. Chem. Theory Comput , vol.2 , pp. 140-148
    • Wang, T.1    Wade, R.2
  • 15
    • 46749127364 scopus 로고    scopus 로고
    • Are current molecular dynamics force fields too helical?
    • Best, R. B., N.-V. Buchete, and G. Hummer. 2008. Are current molecular dynamics force fields too helical? Biophys. J. 95:L07-L09.
    • (2008) Biophys. J , vol.95
    • Best, R.B.1    Buchete, N.-V.2    Hummer, G.3
  • 16
    • 8644224198 scopus 로고    scopus 로고
    • Secondary-structure preferences of force fields for proteins evaluated by generalized-ensemble simulations
    • Yoda, T., Y. Sugita, and Y. Okamoto. 2004. Secondary-structure preferences of force fields for proteins evaluated by generalized-ensemble simulations. Chem. Phys. 307:269-283.
    • (2004) Chem. Phys , vol.307 , pp. 269-283
    • Yoda, T.1    Sugita, Y.2    Okamoto, Y.3
  • 17
    • 34547298869 scopus 로고    scopus 로고
    • Can a physics-based, all-atom potential find a protein's native structure among misfolded structures? I. Large scale AMBER benchmarking
    • Wroblewska, L., and J. Skolnick. 2007. Can a physics-based, all-atom potential find a protein's native structure among misfolded structures? I. Large scale AMBER benchmarking. J. Comput. Chem. 28:2059-2066.
    • (2007) J. Comput. Chem , vol.28 , pp. 2059-2066
    • Wroblewska, L.1    Skolnick, J.2
  • 18
    • 0141704162 scopus 로고    scopus 로고
    • Free energy landscape of protein folding in water: Explicit vs. implicit solvent
    • Zhou, R. 2003. Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins. 53:148-161.
    • (2003) Proteins , vol.53 , pp. 148-161
    • Zhou, R.1
  • 19
    • 0036789950 scopus 로고    scopus 로고
    • Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?
    • Zhou, R., and B. J. Berne. 2002. Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Proc. Natl. Acad. Sci. USA. 99:12777-12782.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 12777-12782
    • Zhou, R.1    Berne, B.J.2
  • 20
    • 34250161638 scopus 로고    scopus 로고
    • Tuning λ6-85 towards downhill folding at its melting temperature
    • Liu, F., and M. Gruebele. 2007. Tuning λ6-85 towards downhill folding at its melting temperature. J. Mol. Biol. 370:574-584.
    • (2007) J. Mol. Biol , vol.370 , pp. 574-584
    • Liu, F.1    Gruebele, M.2
  • 21
    • 24344464777 scopus 로고    scopus 로고
    • Engineering a β-sheet protein toward the folding speed limit
    • Nguyen, H., M. Jäger, J. W. Kelly, and M. Gruebele. 2005. Engineering a β-sheet protein toward the folding speed limit. J. Phys. Chem. B. 109:15182-15186.
    • (2005) J. Phys. Chem. B , vol.109 , pp. 15182-15186
    • Nguyen, H.1    Jäger, M.2    Kelly, J.W.3    Gruebele, M.4
  • 23
    • 40649128566 scopus 로고    scopus 로고
    • An experimental survey of the transition between two-state and downhill protein folding scenarios
    • Liu, F., D. Du, A. A. Fuller, J. E. Davoren, P. Wipf, et al. 2008. An experimental survey of the transition between two-state and downhill protein folding scenarios. Proc. Natl. Acad. Sci. USA. 105:2369-2374.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 2369-2374
    • Liu, F.1    Du, D.2    Fuller, A.A.3    Davoren, J.E.4    Wipf, P.5
  • 24
    • 33745714381 scopus 로고    scopus 로고
    • Testing simplified proteins models of the hPin1 WW domain
    • Cecconi, F., C. Guardiani, and R. Livi. 2006. Testing simplified proteins models of the hPin1 WW domain. Biophys. J. 91:694-704.
    • (2006) Biophys. J , vol.91 , pp. 694-704
    • Cecconi, F.1    Guardiani, C.2    Livi, R.3
  • 25
    • 0242383943 scopus 로고    scopus 로고
    • Improved Gō-like models demonstrate the robustness of protein folding mechanisms to non-native interactions
    • Karanicolas, J., and C. L. Brooks. 2003. Improved Gō-like models demonstrate the robustness of protein folding mechanisms to non-native interactions. J. Mol. Biol. 334:309-325.
    • (2003) J. Mol. Biol , vol.334 , pp. 309-325
    • Karanicolas, J.1    Brooks, C.L.2
  • 26
    • 34548778164 scopus 로고    scopus 로고
    • Temperature-dependent folding pathways of Pin1 WW domain: An all-atom molecular dynamics simulation of a Gō model
    • Luo, Z., J. Ding, and Y. Zhou. 2007. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model. Biophys. J. 93:2152-2161.
    • (2007) Biophys. J , vol.93 , pp. 2152-2161
    • Luo, Z.1    Ding, J.2    Zhou, Y.3
  • 27
    • 53449099402 scopus 로고    scopus 로고
    • Computing conformational free energy by deactivated morphing
    • Park, S., A. Y. Lau, and B. Roux. 2008. Computing conformational free energy by deactivated morphing. J. Chem. Phys. 129:134102.
    • (2008) J. Chem. Phys , vol.129 , pp. 134102
    • Park, S.1    Lau, A.Y.2    Roux, B.3
  • 31
    • 0029619259 scopus 로고
    • Knowledge-based secondary structure assignment
    • Frishman, D., and P. Argos. 1995. Knowledge-based secondary structure assignment. Proteins. 23:566-579.
    • (1995) Proteins , vol.23 , pp. 566-579
    • Frishman, D.1    Argos, P.2
  • 32
    • 33749442647 scopus 로고    scopus 로고
    • Multi-Seq: Unifying sequence and structure data for evolutionary analysis
    • Roberts, E., J. Eargle, D. Wright, and Z. Luthey-Schulten. 2006. Multi-Seq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics. 7:382.
    • (2006) BMC Bioinformatics , vol.7 , pp. 382
    • Roberts, E.1    Eargle, J.2    Wright, D.3    Luthey-Schulten, Z.4
  • 33
    • 3142714765 scopus 로고    scopus 로고
    • MacKerell, Jr., A. D., M. Feig, and C. L. Brooks, III. 2004. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400-1415.
    • MacKerell, Jr., A. D., M. Feig, and C. L. Brooks, III. 2004. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400-1415.
  • 34
    • 48749148224 scopus 로고
    • RATTLE: A "velocity" version of the SHAKE algorithm for molecular dynamics calculations
    • Andersen, H. C. 1983. RATTLE: a "velocity" version of the SHAKE algorithm for molecular dynamics calculations. J. Chem. Phys. 52: 24-34.
    • (1983) J. Chem. Phys , vol.52 , pp. 24-34
    • Andersen, H.C.1
  • 35
    • 0027321958 scopus 로고
    • Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches
    • Miyamoto, S., and P. A. Kollman. 1993. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Proteins Struct. Funct. Gen. 16:226-245.
    • (1993) Proteins Struct. Funct. Gen , vol.16 , pp. 226-245
    • Miyamoto, S.1    Kollman, P.A.2
  • 38
    • 77956393485 scopus 로고    scopus 로고
    • A linear programming approach for the least-squares protein morphing problem
    • In press
    • Anitescu, M., and S. Park. 2009. A linear programming approach for the least-squares protein morphing problem. Math. Program. In press.
    • (2009) Math. Program
    • Anitescu, M.1    Park, S.2
  • 39
    • 3142707288 scopus 로고    scopus 로고
    • Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper β-hairpin
    • Singhal, N., C. D. Snow, and V. S. Pande. 2004. Using path sampling to build better Markovian state models: predicting the folding rate and mechanism of a tryptophan zipper β-hairpin. J. Chem. Phys. 121:415-425.
    • (2004) J. Chem. Phys , vol.121 , pp. 415-425
    • Singhal, N.1    Snow, C.D.2    Pande, V.S.3
  • 40
    • 33748248896 scopus 로고    scopus 로고
    • Using massively parallel simulation and Markovian models to study protein folding: Examining the dynamics of the villin headpiece
    • Jayachandran, G., V. Vishal, and V. S. Pande. 2006. Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece. J. Chem. Phys. 124:164902.
    • (2006) J. Chem. Phys , vol.124 , pp. 164902
    • Jayachandran, G.1    Vishal, V.2    Pande, V.S.3
  • 41
    • 0036385794 scopus 로고    scopus 로고
    • The backbone conformational entropy of protein folding: Experimental measures from atomic force microscopy
    • Thompson, J. B., H. G. Hansma, P. K. Hansma, and K. W. Plaxco. 2002. The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy. J. Mol. Biol. 322: 645-652.
    • (2002) J. Mol. Biol , vol.322 , pp. 645-652
    • Thompson, J.B.1    Hansma, H.G.2    Hansma, P.K.3    Plaxco, K.W.4
  • 42
    • 0000837770 scopus 로고    scopus 로고
    • Directional hydrogen bonding in the MM3 force field: II
    • Lii, J.-H., and N. L. Allinger. 1998. Directional hydrogen bonding in the MM3 force field: II. J. Comput. Chem. 19:1001-1016.
    • (1998) J. Comput. Chem , vol.19 , pp. 1001-1016
    • Lii, J.-H.1    Allinger, N.L.2
  • 43
    • 0036100338 scopus 로고    scopus 로고
    • An improved hydrogen bond potential: Impact on medium resolution protein structures
    • Fabiola, F., R. Bertram, A. Korostelev, and M. S. Chapman. 2002. An improved hydrogen bond potential: impact on medium resolution protein structures. Protein Sci. 11:1415-1423.
    • (2002) Protein Sci , vol.11 , pp. 1415-1423
    • Fabiola, F.1    Bertram, R.2    Korostelev, A.3    Chapman, M.S.4
  • 44
    • 2342593131 scopus 로고    scopus 로고
    • Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations
    • Morozov, A. V., T. Kortemme, K. Tsemekhman, and D. Baker. 2004. Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proc. Natl. Acad. Sci. USA. 101:6946-6951.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 6946-6951
    • Morozov, A.V.1    Kortemme, T.2    Tsemekhman, K.3    Baker, D.4
  • 45
    • 0037470581 scopus 로고    scopus 로고
    • An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes
    • Kortemme, T., A. V. Morozov, and D. Baker. 2003. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326:1239-1259.
    • (2003) J. Mol. Biol , vol.326 , pp. 1239-1259
    • Kortemme, T.1    Morozov, A.V.2    Baker, D.3
  • 46
    • 84961981091 scopus 로고    scopus 로고
    • Implicit solvation models: Equilibria, structure, spectra, and dynamics
    • Cramer, C., and D. Truhlar. 1999. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem. Rev. 99:2161-2200.
    • (1999) Chem. Rev , vol.99 , pp. 2161-2200
    • Cramer, C.1    Truhlar, D.2
  • 47
    • 0011960339 scopus 로고    scopus 로고
    • Hydrophobicity at small and large length scales
    • Lum, K., D. Chandler, and J. Weeks. 1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B. 103:4570-4577.
    • (1999) J. Phys. Chem. B , vol.103 , pp. 4570-4577
    • Lum, K.1    Chandler, D.2    Weeks, J.3
  • 48
    • 0034682487 scopus 로고    scopus 로고
    • Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding
    • Huang, D. M., and D. Chandler. 2000. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl. Acad. Sci. USA. 97:8324-8327.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 8324-8327
    • Huang, D.M.1    Chandler, D.2
  • 49
    • 33744822783 scopus 로고    scopus 로고
    • Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms
    • Wagoner, J. A., and N. A. Baker. 2006. Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA. 103:8331-8336.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 8331-8336
    • Wagoner, J.A.1    Baker, N.A.2
  • 50
    • 42049087036 scopus 로고    scopus 로고
    • Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions
    • Chen, J., and C. L. Brooks. 2008. Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions. Phys. Chem. Chem. Phys. 10:471-481.
    • (2008) Phys. Chem. Chem. Phys , vol.10 , pp. 471-481
    • Chen, J.1    Brooks, C.L.2
  • 51
    • 38549152231 scopus 로고    scopus 로고
    • Conformational sampling of peptides in cellular environments
    • Tanizaki, S., J. Clifford, B. D. Connelly, and M. Feig. 2008. Conformational sampling of peptides in cellular environments. Biophys. J. 94:747-759.
    • (2008) Biophys. J , vol.94 , pp. 747-759
    • Tanizaki, S.1    Clifford, J.2    Connelly, B.D.3    Feig, M.4
  • 52
    • 57949107089 scopus 로고    scopus 로고
    • Is alanine dipeptide a good model for representing the torsional preferences of protein backbones?
    • Feig, M. 2008. Is alanine dipeptide a good model for representing the torsional preferences of protein backbones? J. Chem. Theory Comput. 4:1555-1564.
    • (2008) J. Chem. Theory Comput , vol.4 , pp. 1555-1564
    • Feig, M.1
  • 53
    • 33846185169 scopus 로고    scopus 로고
    • Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator
    • Harder, E., V. Anisimov, I. Vorobyov, P. Lopes, S. Noskov, et al. 2006. Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator. J. Chem. Theory Comput. 2:1587-1597.
    • (2006) J. Chem. Theory Comput , vol.2 , pp. 1587-1597
    • Harder, E.1    Anisimov, V.2    Vorobyov, I.3    Lopes, P.4    Noskov, S.5
  • 54
    • 0343005873 scopus 로고    scopus 로고
    • Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation
    • Weber, W., P. Hünenberger, and J. McCammon. 2000. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: influence of artificial periodicity on peptide conformation. J. Phys. Chem. B. 104:3668-3675.
    • (2000) J. Phys. Chem. B , vol.104 , pp. 3668-3675
    • Weber, W.1    Hünenberger, P.2    McCammon, J.3
  • 55
    • 0037627173 scopus 로고    scopus 로고
    • Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: A continuum electrostatics study
    • Hünenberger, P. H., and J. A. McCammon. 1999. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys. Chem. 78:69-88.
    • (1999) Biophys. Chem , vol.78 , pp. 69-88
    • Hünenberger, P.H.1    McCammon, J.A.2
  • 56
    • 1642525904 scopus 로고    scopus 로고
    • Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods
    • Kastenholz, M., and P. Hünenberger. 2004. Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods. J. Phys. Chem. B. 108:774-788.
    • (2004) J. Phys. Chem. B , vol.108 , pp. 774-788
    • Kastenholz, M.1    Hünenberger, P.2
  • 57
    • 24144479792 scopus 로고    scopus 로고
    • Solvation free energies of amino acid side chain analogs for common molecular mechanics water models
    • Shirts, M. R., and V. S. Pande. 2005. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J. Chem. Phys. 122:134508.
    • (2005) J. Chem. Phys , vol.122 , pp. 134508
    • Shirts, M.R.1    Pande, V.S.2
  • 58
    • 65249124122 scopus 로고    scopus 로고
    • Computations of standard binding free energies with molecular dynamics simulations
    • In press
    • Deng, Y., and B. Roux. 2009. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B. In press.
    • (2009) J. Phys. Chem. B
    • Deng, Y.1    Roux, B.2
  • 59
    • 46149096463 scopus 로고    scopus 로고
    • Protein model refinement using an optimized physics-based all-atom force field
    • Jagielska, A., L. Wroblewska, and J. Skolnick. 2008. Protein model refinement using an optimized physics-based all-atom force field. Proc. Natl. Acad. Sci. USA. 105:8268-8273
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 8268-8273
    • Jagielska, A.1    Wroblewska, L.2    Skolnick, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.