-
1
-
-
0002016326
-
Aqueous Solutions of Symmetrical Tetraalkylammonium Salts
-
Horne, R. A, Ed, Wiley-Interscience: New York
-
Wen, W.-Y. Aqueous Solutions of Symmetrical Tetraalkylammonium Salts. In Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes; Horne, R. A., Ed.; Wiley-Interscience: New York, 1972;p 613.
-
(1972)
Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes
, pp. 613
-
-
Wen, W.-Y.1
-
6
-
-
0036569082
-
-
Andersson, G.; Morgner, H.; Schulze, K. D. Nucl. Instrum. Methods B 2002, 190, 222.
-
(2002)
Nucl. Instrum. Methods B
, vol.190
, pp. 222
-
-
Andersson, G.1
Morgner, H.2
Schulze, K.D.3
-
7
-
-
23844527449
-
-
Andersson, G.; Krebs, T.; Morgner, H. Phys. Chem. Chem. Phys. 2005, 7, 2948.
-
(2005)
Phys. Chem. Chem. Phys
, vol.7
, pp. 2948
-
-
Andersson, G.1
Krebs, T.2
Morgner, H.3
-
8
-
-
0000071937
-
-
Ballard, R. E.; Jones, J.; Sutherland, E. Chem. Phys. Lett. 1984, 112, 310.
-
(1984)
Chem. Phys. Lett
, vol.112
, pp. 310
-
-
Ballard, R.E.1
Jones, J.2
Sutherland, E.3
-
9
-
-
0002508756
-
-
Holmberg, S.; Yuan, Z. C.; Moberg, R.; Siegbahn, H. J. Electron Spectrosc. 1988, 47, 27.
-
(1988)
J. Electron Spectrosc
, vol.47
, pp. 27
-
-
Holmberg, S.1
Yuan, Z.C.2
Moberg, R.3
Siegbahn, H.4
-
10
-
-
0029637555
-
-
Eschen, F.; Heyerhoff, M.; Morgner, H.; Vogt, J. J. Phys.: Condens. Matter 1995, 7, 1961.
-
(1995)
J. Phys.: Condens. Matter
, vol.7
, pp. 1961
-
-
Eschen, F.1
Heyerhoff, M.2
Morgner, H.3
Vogt, J.4
-
11
-
-
4944249194
-
-
Winter, B.; Weber, R.; Schmidt, P. M.; Hertel, I. V.; Faubel, M.; Vrbka, L.; Jungwirth, P. J. Phys. Chem. B 2004, 108, 14558.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 14558
-
-
Winter, B.1
Weber, R.2
Schmidt, P.M.3
Hertel, I.V.4
Faubel, M.5
Vrbka, L.6
Jungwirth, P.7
-
12
-
-
21644450000
-
-
Winter, B.; Weber, R.; Hertel, I. V.; Faubel, M.; Vrbka, L.; Jungwirth, P. Chem. Phys. Lett. 2005, 410, 222.
-
(2005)
Chem. Phys. Lett
, vol.410
, pp. 222
-
-
Winter, B.1
Weber, R.2
Hertel, I.V.3
Faubel, M.4
Vrbka, L.5
Jungwirth, P.6
-
13
-
-
34547315115
-
-
Bergersen, H.; Marinho, R. R. T.; Pokapanich, W.; Lindblad, A.; Björneholm, O.; Saethre, L. J.; Öhrwall, G. J. Phys.: Condens. Matter 2007, 79, 326101.
-
(2007)
J. Phys.: Condens. Matter
, vol.79
, pp. 326101
-
-
Bergersen, H.1
Marinho, R.R.T.2
Pokapanich, W.3
Lindblad, A.4
Björneholm, O.5
Saethre, L.J.6
Öhrwall, G.7
-
14
-
-
33750611731
-
-
Hrobárik, T.; Vrbka, L.; Jungwirth, P. Biophys. Chem. 2006, 124, 238.
-
(2006)
Biophys. Chem
, vol.124
, pp. 238
-
-
Hrobárik, T.1
Vrbka, L.2
Jungwirth, P.3
-
19
-
-
0004273538
-
-
C. R. C. Press: Cleveland
-
Newman, A. A. Glycerol; C. R. C. Press: Cleveland, 1968.
-
(1968)
Glycerol
-
-
Newman, A.A.1
-
20
-
-
0037118398
-
-
Ringeisen, B. R.; Muenter, A. H.; Nathanson, G. M. J. Phys. Chem. B 2002, 106, 4988.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 4988
-
-
Ringeisen, B.R.1
Muenter, A.H.2
Nathanson, G.M.3
-
21
-
-
0037118399
-
-
Ringeisen, B. R.; Muenter, A. H.; Nathanson, G. M. J. Phys. Chem. B 2002, 106, 4999.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 4999
-
-
Ringeisen, B.R.1
Muenter, A.H.2
Nathanson, G.M.3
-
22
-
-
0742319381
-
-
Chorny, I.; Benjamin, I.; Nathanson, G. M. J. Phys. Chem. B 2004, 108, 995.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 995
-
-
Chorny, I.1
Benjamin, I.2
Nathanson, G.M.3
-
23
-
-
33645522601
-
-
Muenter, A. H.; DeZwaan, J. L.; Nathanson, G. M. J. Phys. Chem. B 2006, 110, 4881.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 4881
-
-
Muenter, A.H.1
DeZwaan, J.L.2
Nathanson, G.M.3
-
24
-
-
35948971356
-
-
Muenter, A. H.; DeZwaan, J. L.; Nathanson, G. M. J. Phys. Chem C 2007, 111, 15043.
-
(2007)
J. Phys. Chem C
, vol.111
, pp. 15043
-
-
Muenter, A.H.1
DeZwaan, J.L.2
Nathanson, G.M.3
-
25
-
-
40549126287
-
-
DeZwaan, J. L.; Brastad, S. M.; Nathanson, G. M. J. Phys. Chem. C 2008, 112, 3008.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 3008
-
-
DeZwaan, J.L.1
Brastad, S.M.2
Nathanson, G.M.3
-
26
-
-
67649536268
-
-
THAI was not a feasible choice for these experiments because of its low solubility which is only 5 x 10-4 molal in water, See ref 27
-
-4 molal in water). See ref 27.
-
-
-
-
27
-
-
0010105338
-
-
Nakayama, H.; Kuwata, H.; Yamamoto, N.; Akagi, Y.; Matsui, H. Bull. Chem. Soc. Jpn. 1989, 62, 985.
-
(1989)
Bull. Chem. Soc. Jpn
, vol.62
, pp. 985
-
-
Nakayama, H.1
Kuwata, H.2
Yamamoto, N.3
Akagi, Y.4
Matsui, H.5
-
29
-
-
0000629625
-
-
-2 when activity coefficients for TBABr in acetonitrile are used in eq 1. This solvent was chosen because its dielectric constant of 38 is similar to the value of 41 for glycerol. See Barthel, J.; Kunz, W. J. Solution Chem. 1988, 17, 399.
-
-2 when activity coefficients for TBABr in acetonitrile are used in eq 1. This solvent was chosen because its dielectric constant of 38 is similar to the value of 41 for glycerol. See Barthel, J.; Kunz, W. J. Solution Chem. 1988, 17, 399.
-
-
-
-
30
-
-
12444332064
-
-
Andersson, G.; Krebs, T.; Morgner, H. Phys. Chem. Chem. Phys. 2005, 7, 136.
-
(2005)
Phys. Chem. Chem. Phys
, vol.7
, pp. 136
-
-
Andersson, G.1
Krebs, T.2
Morgner, H.3
-
32
-
-
84869312698
-
-
The effective van der Waals radius of THA+ is estimated in ref 2 to be 4.7 Â. This yields a cross-sectional area A THA, πrVdW2, 70 Â2 and predicts the smallest area for THA+ among the different estimates reviewed in ref 2 (including partial molar in water, This 70 Â2 estimate is corroborated by CPK molecular models, which indicate that each hexyl chain is roughly the size of a glycerol molecule. The area for Br- is obtained from γBr, 1.8 Â (Cotton, F. A, Wilkinson, G, Murillo, C. A, Bochmann, M. Advanced Inorganic Chemistry, 6th ed, Wiley:New York, 1999; Appendix 4, and the average area of a glycerol molecule is calculated from its liquid phase density, p, 1.26 g cm-3, and molecular weight, W, to be Agiy, W/p)2/3
-
2/3..
-
-
-
-
33
-
-
84869312699
-
-
-2 using activity coefficients measured for NaI in glycerol (ref 23). Even this deficit is likely to be too high because activity coefficients for NaBr in water are smaller than for NaI (ref 59).
-
-2 using activity coefficients measured for NaI in glycerol (ref 23). Even this deficit is likely to be too high because activity coefficients for NaBr in water are smaller than for NaI (ref 59).
-
-
-
-
34
-
-
24944441707
-
-
Lawrence, J. R.; Glass, S. V.; Nathanson, G. M. J. Phys. Chem. A 2005, 109, 7449.
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 7449
-
-
Lawrence, J.R.1
Glass, S.V.2
Nathanson, G.M.3
-
35
-
-
33745700117
-
-
Glass, S. V.; Park, S.-C; Nathanson, G. M. J. Phys. Chem. A 2006, 110, 7593.
-
(2006)
J. Phys. Chem. A
, vol.110
, pp. 7593
-
-
Glass, S.V.1
Park, S.-C.2
Nathanson, G.M.3
-
36
-
-
33745794048
-
-
Köhler, S. P. K.; Reed, S. K.; Westacott, R. E.; McKendrick, K. G. J. Phys. Chem. B 2006, 110, 11717.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 11717
-
-
Köhler, S.P.K.1
Reed, S.K.2
Westacott, R.E.3
McKendrick, K.G.4
-
37
-
-
84869337417
-
-
-1), which implies an average residence time shorter than the time for diffusion across a single glycerol layer. See eq 2 of ref 20.
-
-1), which implies an average residence time shorter than the time for diffusion across a single glycerol layer. See eq 2 of ref 20.
-
-
-
-
38
-
-
84869337419
-
-
The HCl beam energy is 10 kJ mol-1 higher than the 90 kJ mol-1 DCl beam energy, leading to slightly smaller trapping and solvation probabilities for HCl than would have been measured for DCl. The measured value for pure glycerol of psoiv, 0.43 ± 0.05 is coincidentally identical to the average of 23 prior measurements for pure glycerol using 90 kJ mol-1 DCl. This coincidence reflects the small changes in trapping probability with incident energy and the uncertainty in the measurement see Figure 8 of ref 20, We therefore did not rescale the p soiv values in Figure 6 but assumed that they may also be used for the present DCl experiments
-
soiv values in Figure 6 but assumed that they may also be used for the present DCl experiments.
-
-
-
-
39
-
-
56849100974
-
-
See also Zolot, A. M, Dagdigian, P. J, Nesbitt, D. J. J. Chem. Phys. 2008, 129, 194705, which reports longtime evaporation (>1 ms) of HF from squalane following collisions of F atoms. This signal is attributed to emission of hot HF molecules from the liquid that strike the chamber walls, thermalize, and return to the probe region. In our experiments, the analogous source of HCl would be the 6% HCl impurity in the impinging DCl beam. The HCl signal arising from this impurity is subtracted from each TOF spectrum in Figures 7 and 8 by recording the HCl TOF spectrum generated by an impinging HCl beam created in the same way as the DCl beam. This subtraction procedure automatically removes from the TOF spectra the signal from any HCl molecules that strike the chamber walls and return to the probe region
-
See also Zolot, A. M.; Dagdigian, P. J.; Nesbitt, D. J. J. Chem. Phys. 2008, 129, 194705, which reports longtime evaporation (>1 ms) of HF from squalane following collisions of F atoms. This signal is attributed to emission of hot HF molecules from the liquid that strike the chamber walls, thermalize, and return to the probe region. In our experiments, the analogous source of HCl would be the 6% HCl impurity in the impinging DCl beam. The HCl signal arising from this impurity is subtracted from each TOF spectrum in Figures 7 and 8 by recording the HCl TOF spectrum generated by an impinging HCl beam created in the same way as the DCl beam. This subtraction procedure automatically removes from the TOF spectra the signal from any HCl molecules that strike the chamber walls and return to the probe region.
-
-
-
-
40
-
-
84869337416
-
-
-1, times the ratio of viscosities, (1 cP/35 cP).
-
-1, times the ratio of viscosities, (1 cP/35 cP).
-
-
-
-
41
-
-
67649536266
-
-
The NaBr reaction probabilities measured in ref 24 are determined by scaling the HCl and DCl TOF signals from NaBr-glycerol to the values for pure glycerol recorded at the same time. The ratios are then multiplied by the average reaction probabilities for pure glycerol, as described in the Appendix of ref 24. The averages used in ref 24 were based on 11 measurements for pure glycerol. We have updated the reaction probabilities on the basis of a new average of 23 pure glycerol measurements. The updated values for pure glycerol and NaBr-glycerol reported in Figure 9 lie within 10% of the values reported in ref 24
-
The NaBr reaction probabilities measured in ref 24 are determined by scaling the HCl and DCl TOF signals from NaBr-glycerol to the values for pure glycerol recorded at the same time. The ratios are then multiplied by the average reaction probabilities for pure glycerol, as described in the Appendix of ref 24. The averages used in ref 24 were based on 11 measurements for pure glycerol. We have updated the reaction probabilities on the basis of a new average of 23 pure glycerol measurements. The updated values for pure glycerol and NaBr-glycerol reported in Figure 9 lie within 10% of the values reported in ref 24.
-
-
-
-
46
-
-
33748325805
-
-
Faralli, C.; Pagliai, M.; Cardini, G.; Schettino, V. J. Phys. Chem. B 2006, 110, 14923.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 14923
-
-
Faralli, C.1
Pagliai, M.2
Cardini, G.3
Schettino, V.4
-
47
-
-
0037115863
-
-
Ayala, R.; Martínez, J. M.; Pappalardo, R. R.; Saint-Martin, H.; Ortega-Blake, I.; Marcos, E. S. J. Chem. Phys. 2002, 10512.
-
(2002)
J. Chem. Phys
, pp. 10512
-
-
Ayala, R.1
Martínez, J.M.2
Pappalardo, R.R.3
Saint-Martin, H.4
Ortega-Blake, I.5
Marcos, E.S.6
-
48
-
-
0037961636
-
-
Carrillo-Tripp, M.; Saint-Martin, H.; Ortega-Blake, I. J. Chem. Phys. 2003, 118, 7062.
-
(2003)
J. Chem. Phys
, vol.118
, pp. 7062
-
-
Carrillo-Tripp, M.1
Saint-Martin, H.2
Ortega-Blake, I.3
-
49
-
-
33846479398
-
-
Ikeda, T.; Boero, M.; Terakura, K. J. Chem. Phys. 2007, 126, 034501.
-
(2007)
J. Chem. Phys
, vol.126
, pp. 034501
-
-
Ikeda, T.1
Boero, M.2
Terakura, K.3
-
52
-
-
0020793837
-
-
For the effect of ions on proton transport in aqueous solutions, see
-
For the effect of ions on proton transport in aqueous solutions, see Hertz, H. G.; Versmold, H.; Yoon, C. Ber. Bunsenges. Phys. Chem. 1983, 87, 577.
-
(1983)
Ber. Bunsenges. Phys. Chem
, vol.87
, pp. 577
-
-
Hertz, H.G.1
Versmold, H.2
Yoon, C.3
-
53
-
-
84861084117
-
-
Diratsaoglu, J.; Hauber, S.; Hertz, H. G.; Müller, K. J. Z. Phys. Chem. 1990, 168, 13.
-
(1990)
Phys. Chem
, vol.168
, pp. 13
-
-
Diratsaoglu, J.1
Hauber, S.2
Hertz, H.G.3
Müller, K.J.Z.4
-
54
-
-
34247357845
-
-
Choe, Y.-K.; Tsuchida, E.; Ikeshoji, T. J. Chem Phys. 2007, 126, 154510 .
-
(2007)
J. Chem Phys
, vol.126
, pp. 154510
-
-
Choe, Y.-K.1
Tsuchida, E.2
Ikeshoji, T.3
-
56
-
-
0036100804
-
-
Buchner, R.; Hölzl, C.; Stauber, J.; Barthel, J. Phys. Chem. Chem. Phys. 2002, 4, 2169.
-
(2002)
Phys. Chem. Chem. Phys
, vol.4
, pp. 2169
-
-
Buchner, R.1
Hölzl, C.2
Stauber, J.3
Barthel, J.4
-
57
-
-
67649563959
-
-
Kunz, W.; Turq, P.; Calmettes, P.; Barthel, J.; Klein, L. J. Phys. Chem. 1006, 96, 2743.
-
J. Phys. Chem
, vol.1006
, Issue.96
, pp. 2743
-
-
Kunz, W.1
Turq, P.2
Calmettes, P.3
Barthel, J.4
Klein, L.5
-
59
-
-
33845283523
-
-
Heinje, G.; Luck, W. A. P.; Heinzinger, K. J. Phys. Chem. 1987, 91, 331.
-
(1987)
J. Phys. Chem
, vol.91
, pp. 331
-
-
Heinje, G.1
Luck, W.A.P.2
Heinzinger, K.3
-
60
-
-
0000904232
-
-
Moberg, R.; Bokman, F.; Bohman, O.; Siegbahn, H. J. Am. Chem. Soc. 1990, 113, 3663.
-
(1990)
J. Am. Chem. Soc
, vol.113
, pp. 3663
-
-
Moberg, R.1
Bokman, F.2
Bohman, O.3
Siegbahn, H.4
|