메뉴 건너뛰기




Volumn 42, Issue 11, 2009, Pages 2327-2334

Feature extraction based on Laplacian bidirectional maximum margin criterion

Author keywords

Bidirectional; Face recognition; Feature extraction; Laplacian; MMC

Indexed keywords

BIDIRECTIONAL; DISCRIMINANT VECTORS; FEATURE EXTRACTION METHODS; LAPLACIAN; LAPLACIAN MATRICES; LINEAR DISCRIMINANT ANALYSIS; LOCAL STRUCTURE; MACHINE-LEARNING; MAXIMUM MARGIN CRITERIONS; MMC; NOVEL CRITERION; STRUCTURAL INFORMATION; WITHIN-CLASS SCATTER MATRIX; YALE FACE DATABASE;

EID: 67649419071     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.03.017     Document Type: Article
Times cited : (72)

References (58)
  • 1
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • North Holland, Amsterdam
    • Jain A.K., and Chandrasekaran B. Dimensionality and sample size considerations in pattern recognition practice. Handbook of Statistics (1982), North Holland, Amsterdam
    • (1982) Handbook of Statistics
    • Jain, A.K.1    Chandrasekaran, B.2
  • 3
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: recommendations for practitioners
    • Raudys S.J., and Jain A.K. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 13 3 (1991) 252-264
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 6
    • 0036487285 scopus 로고    scopus 로고
    • Why can LDA be performed in PCA transformed space?
    • Yang J., and Yang J.Y. Why can LDA be performed in PCA transformed space?. Pattern Recognition 36 2 (2003) 563-566
    • (2003) Pattern Recognition , vol.36 , Issue.2 , pp. 563-566
    • Yang, J.1    Yang, J.Y.2
  • 7
    • 0025792756 scopus 로고
    • Optimal discriminant plane for a small number of samples and design method of classifier on the plane
    • Hong Z.Q., and Yang J.Y. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition 24 4 (1991) 317-324
    • (1991) Pattern Recognition , vol.24 , Issue.4 , pp. 317-324
    • Hong, Z.Q.1    Yang, J.Y.2
  • 11
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • Chen L.F., Liao H.Y.M., Ko M.T., and Yu G.J. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33 1 (2000) 1713-1726
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 1713-1726
    • Chen, L.F.1    Liao, H.Y.M.2    Ko, M.T.3    Yu, G.J.4
  • 12
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high dimensional data-with application to face recognition
    • Yu H., and Yang J. A direct LDA algorithm for high dimensional data-with application to face recognition. Pattern Recognition 34 10 (2001) 2067-2070
    • (2001) Pattern Recognition , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 13
    • 54249148896 scopus 로고    scopus 로고
    • Face recognition using FLDA with single training image per-person
    • Gao Q.X., Zhang L., and Zhang D. Face recognition using FLDA with single training image per-person. Applied Mathematics and Computation 205 12 (2008) 726-734
    • (2008) Applied Mathematics and Computation , vol.205 , Issue.12 , pp. 726-734
    • Gao, Q.X.1    Zhang, L.2    Zhang, D.3
  • 14
    • 24044501907 scopus 로고    scopus 로고
    • Inverse Fisher discriminant criteria for small sample size problem and its application to face recognition
    • Zhuang X.S., and Dai D.Q. Inverse Fisher discriminant criteria for small sample size problem and its application to face recognition. Pattern Recognition 38 11 (2005) 2192-2194
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 2192-2194
    • Zhuang, X.S.1    Dai, D.Q.2
  • 15
    • 33846297970 scopus 로고    scopus 로고
    • Improved discriminant analysis for high-dimensional data and its application to face recognition
    • Zhuang X.S., and Dai D.Q. Improved discriminant analysis for high-dimensional data and its application to face recognition. Pattern Recognition 40 5 (2007) 1570-1578
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 1570-1578
    • Zhuang, X.S.1    Dai, D.Q.2
  • 16
    • 0035400784 scopus 로고    scopus 로고
    • Face recognition based on the uncorrelated discrimination transformation
    • Jin Z., Yang J.Y., Hu Z., and Lou Z. Face recognition based on the uncorrelated discrimination transformation. Pattern Recognition 34 7 (2001) 1405-1416
    • (2001) Pattern Recognition , vol.34 , Issue.7 , pp. 1405-1416
    • Jin, Z.1    Yang, J.Y.2    Hu, Z.3    Lou, Z.4
  • 17
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Li H., Jiang T., and Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks 17 1 (2006) 1157-1165
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.1 , pp. 1157-1165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 19
    • 14644408830 scopus 로고    scopus 로고
    • 2D-LDA: a statistical linear discriminant analysis for image matrix
    • Li M., and Yuan B. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters 26 (2005) 527-532
    • (2005) Pattern Recognition Letters , vol.26 , pp. 527-532
    • Li, M.1    Yuan, B.2
  • 20
    • 17444363017 scopus 로고    scopus 로고
    • Two-dimensional discriminant transform for face recognition
    • Yang J., Zhang D., Xu Y., and Yang J.J. Two-dimensional discriminant transform for face recognition. Pattern Recognition 38 (2005) 1125-1129
    • (2005) Pattern Recognition , vol.38 , pp. 1125-1129
    • Yang, J.1    Zhang, D.2    Xu, Y.3    Yang, J.J.4
  • 22
    • 32044437958 scopus 로고    scopus 로고
    • Face recognition based on 2D Fisherface approach
    • Jing X.Y., Wong H.S., and Zhang D. Face recognition based on 2D Fisherface approach. Pattern Recognition 39 (2006) 707-710
    • (2006) Pattern Recognition , vol.39 , pp. 707-710
    • Jing, X.Y.1    Wong, H.S.2    Zhang, D.3
  • 23
    • 41549158225 scopus 로고    scopus 로고
    • 1D-LDA vs. 2D-LDA: when is vector-based linear discriminant analysis better than matrix-based?
    • Zheng W.S., Lai J.H., and Li S.Z. 1D-LDA vs. 2D-LDA: when is vector-based linear discriminant analysis better than matrix-based?. Pattern Recognition 41 7 (2008) 2156-2172
    • (2008) Pattern Recognition , vol.41 , Issue.7 , pp. 2156-2172
    • Zheng, W.S.1    Lai, J.H.2    Li, S.Z.3
  • 26
    • 58149462501 scopus 로고    scopus 로고
    • Sequential row-column independent component analysis for face recognition
    • Gao Q.X., Zhang L., and Zhang D. Sequential row-column independent component analysis for face recognition. Neurocomputing 72 4-6 (2009) 1152-1159
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1152-1159
    • Gao, Q.X.1    Zhang, L.2    Zhang, D.3
  • 31
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 32
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimension reduction by locally linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimension reduction by locally linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 33
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15 6 (2003) 1373-1396
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 36
    • 33947492041 scopus 로고    scopus 로고
    • Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics
    • Yang J., Zhang D., Yang J.Y., and Niu B. Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 4 (2007) 650-664
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.4 , pp. 650-664
    • Yang, J.1    Zhang, D.2    Yang, J.Y.3    Niu, B.4
  • 42
    • 84880903188 scopus 로고    scopus 로고
    • H. Wang, S.C. Yan, T.S. Huang, X. Tang, A convergent solution to tensor subspace learning, in: IJCAI, 2007, pp. 629-634.
    • H. Wang, S.C. Yan, T.S. Huang, X. Tang, A convergent solution to tensor subspace learning, in: IJCAI, 2007, pp. 629-634.
  • 43
    • 39549087054 scopus 로고    scopus 로고
    • Image classification using correlation tensor analysis
    • Fu Y., and Huang T.S. Image classification using correlation tensor analysis. IEEE Transactions on Image Processing 17 2 (2008) 226-234
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.2 , pp. 226-234
    • Fu, Y.1    Huang, T.S.2
  • 52
    • 33644903839 scopus 로고    scopus 로고
    • Face recognition using discriminant locality preserving projection
    • Yu W.W., Teng X.L., and Liu C.Q. Face recognition using discriminant locality preserving projection. Image and Vision computing 24 (2006) 239-248
    • (2006) Image and Vision computing , vol.24 , pp. 239-248
    • Yu, W.W.1    Teng, X.L.2    Liu, C.Q.3
  • 56
    • 0742311740 scopus 로고    scopus 로고
    • Analyzing PCA-based face recognition algorithms: eigenvectors selection and distance measures
    • Christensen H., and Phillips J. (Eds), World Scientific, Singapore
    • Yambor W., Draper B., and Beveridge R. Analyzing PCA-based face recognition algorithms: eigenvectors selection and distance measures. In: Christensen H., and Phillips J. (Eds). Empirical Evaluation Methods in Computer Vision (2002), World Scientific, Singapore
    • (2002) Empirical Evaluation Methods in Computer Vision
    • Yambor, W.1    Draper, B.2    Beveridge, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.