메뉴 건너뛰기




Volumn 41, Issue 7, 2008, Pages 2156-2172

1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based?

Author keywords

Fisher's linear discriminant analysis (LDA); Matrix based representation; Pattern recognition; Vector based representation

Indexed keywords

ALGORITHMS; PROBLEM SOLVING; VECTORS;

EID: 41549158225     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.11.025     Document Type: Article
Times cited : (106)

References (58)
  • 1
    • 0025236073 scopus 로고
    • Application of the KL procedure for the characterization of human faces
    • Kirby M., and Sirovich L. Application of the KL procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12 1 (1990) 103-108
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , Issue.1 , pp. 103-108
    • Kirby, M.1    Sirovich, L.2
  • 6
    • 0000764772 scopus 로고
    • The use of multiple measures in taxonomic problems
    • Fisher R.A. The use of multiple measures in taxonomic problems. Ann. Eugenics 7 (1936) 179-188
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 7
    • 0030214923 scopus 로고    scopus 로고
    • Using discriminant eigenfeatures for image retrieval
    • Swets D.L., and Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18 8 (1996) 831-836
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.8 , pp. 831-836
    • Swets, D.L.1    Weng, J.2
  • 9
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept?. Signal Processing 36 (1994) 287-314
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 11
    • 0036604858 scopus 로고    scopus 로고
    • Face representation using independent component analysis
    • Yuen P.C., and Lai J.H. Face representation using independent component analysis. Pattern Recognition 35 6 (2002) 1247-1257
    • (2002) Pattern Recognition , vol.35 , Issue.6 , pp. 1247-1257
    • Yuen, P.C.1    Lai, J.H.2
  • 13
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., and Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 401 6755 (1999) 788-791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 14
    • 0035683536 scopus 로고    scopus 로고
    • S.Z. Li, X.W. Hou, H.J. Zhang, Learning spatially localized, parts-based representation, in: CVPR, 2001.
    • S.Z. Li, X.W. Hou, H.J. Zhang, Learning spatially localized, parts-based representation, in: CVPR, 2001.
  • 17
    • 0036603474 scopus 로고    scopus 로고
    • Principle manifolds and probabilistic subspace for visual recognition
    • Moghaddam B. Principle manifolds and probabilistic subspace for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24 6 (2002) 780-788
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.6 , pp. 780-788
    • Moghaddam, B.1
  • 19
    • 0742268833 scopus 로고    scopus 로고
    • Two-dimensional PCA: a new approach to appearance-based face representation and recognition
    • Yang J., Zhang D., Frangi A.F., and Yang J. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26 1 (2004) 131-137
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.1 , pp. 131-137
    • Yang, J.1    Zhang, D.2    Frangi, A.F.3    Yang, J.4
  • 20
    • 0036721691 scopus 로고    scopus 로고
    • From image vector to matrix: a straightforward image projection technique-IMPCA vs. PCA
    • Yang J., and Yang J.Y. From image vector to matrix: a straightforward image projection technique-IMPCA vs. PCA. Pattern Recognition 35 9 (2002) 1997-1999
    • (2002) Pattern Recognition , vol.35 , Issue.9 , pp. 1997-1999
    • Yang, J.1    Yang, J.Y.2
  • 21
    • 14644408830 scopus 로고    scopus 로고
    • 2D-LDA: a novel statistical linear discriminant analysis for image matrix
    • Li M., and Yuan B. 2D-LDA: a novel statistical linear discriminant analysis for image matrix. Pattern Recognition Lett. 26 5 (2005) 527-532
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.5 , pp. 527-532
    • Li, M.1    Yuan, B.2
  • 22
  • 23
    • 41549125370 scopus 로고    scopus 로고
    • J. Ye, R. Janardan, Q. Li, Two-dimensional linear discriminant analysis, in: NIPS, 2004.
    • J. Ye, R. Janardan, Q. Li, Two-dimensional linear discriminant analysis, in: NIPS, 2004.
  • 24
    • 33745953573 scopus 로고    scopus 로고
    • H. Kong, L. Wang, E.K. Teoh, J.G. Wang, V. Ronda, Generalized 2D principal component analysis, in: IEEE Conference on IJCNN, Canada, 2005.
    • H. Kong, L. Wang, E.K. Teoh, J.G. Wang, V. Ronda, Generalized 2D principal component analysis, in: IEEE Conference on IJCNN, Canada, 2005.
  • 25
    • 30044447599 scopus 로고    scopus 로고
    • Generalized low rank approximations of matrices
    • Ye J. Generalized low rank approximations of matrices. Mach. Learn. 61 (2005) 167-191
    • (2005) Mach. Learn. , vol.61 , pp. 167-191
    • Ye, J.1
  • 26
    • 27344450722 scopus 로고    scopus 로고
    • Diagonal principal component analysis for face recognition
    • Zhang D., Zhou Z.-H., and Chen S. Diagonal principal component analysis for face recognition. Pattern Recognition 39 (2006) 140-142
    • (2006) Pattern Recognition , vol.39 , pp. 140-142
    • Zhang, D.1    Zhou, Z.-H.2    Chen, S.3
  • 27
    • 17444363017 scopus 로고    scopus 로고
    • Two-dimensional discriminant transform for face recognition
    • Yang J., Zhang D., Yong X., and Yang J.-Y. Two-dimensional discriminant transform for face recognition. Pattern Recognition 38 (2005) 1125-1129
    • (2005) Pattern Recognition , vol.38 , pp. 1125-1129
    • Yang, J.1    Zhang, D.2    Yong, X.3    Yang, J.-Y.4
  • 28
    • 24644501794 scopus 로고    scopus 로고
    • H. Kong, L. Wang, E.K. Teoh, A framework of 2D Fisher discriminant analysis: application to face recognition with small number of training samples, in: CVPR, 2005.
    • H. Kong, L. Wang, E.K. Teoh, A framework of 2D Fisher discriminant analysis: application to face recognition with small number of training samples, in: CVPR, 2005.
  • 30
    • 32044437958 scopus 로고    scopus 로고
    • X.-Y. Jing, H.-S. Wong, D. Zhang, Face recognition based on 2D Fisherface approach, Pattern Recognition, 39 (2006) 707-710.
    • X.-Y. Jing, H.-S. Wong, D. Zhang, Face recognition based on 2D Fisherface approach, Pattern Recognition, 39 (2006) 707-710.
  • 31
    • 24644492476 scopus 로고    scopus 로고
    • N.V. Chawla, K. Bowyer, Random subspaces and subsampling for 2-D face recognition, in: CVPR, 2005.
    • N.V. Chawla, K. Bowyer, Random subspaces and subsampling for 2-D face recognition, in: CVPR, 2005.
  • 32
    • 0027609732 scopus 로고
    • Algebraic feature extraction for image recognition based on an optimal discriminant criterion
    • Liu K., Cheng Y.-Q., and Yang J.-Y. Algebraic feature extraction for image recognition based on an optimal discriminant criterion. Pattern Recognition 26 6 (1993) 903-911
    • (1993) Pattern Recognition , vol.26 , Issue.6 , pp. 903-911
    • Liu, K.1    Cheng, Y.-Q.2    Yang, J.-Y.3
  • 34
    • 56149118158 scopus 로고    scopus 로고
    • D. Xu, S. Yan, L. Zhang, M. Li, W. Ma, Z. Liu, H. Zhang, Parallel image matrix compression for face recognition, in: Proceedings of the 11th International Multimedia Modelling Conference, 2005.
    • D. Xu, S. Yan, L. Zhang, M. Li, W. Ma, Z. Liu, H. Zhang, Parallel image matrix compression for face recognition, in: Proceedings of the 11th International Multimedia Modelling Conference, 2005.
  • 35
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA based face recognition system which can solve the small sample size problem
    • Chen L., Liao H., Ko M., Lin J., and Yu G. A new LDA based face recognition system which can solve the small sample size problem. Pattern Recognition 33 10 (2000) 1713-1726
    • (2000) Pattern Recognition , vol.33 , Issue.10 , pp. 1713-1726
    • Chen, L.1    Liao, H.2    Ko, M.3    Lin, J.4    Yu, G.5
  • 36
    • 33751565280 scopus 로고    scopus 로고
    • R. Huang, Q.S. Liu, H.Q. Lu, S.D. Ma, Solving the small sample size problem of LDA, in: ICPR, 2002.
    • R. Huang, Q.S. Liu, H.Q. Lu, S.D. Ma, Solving the small sample size problem of LDA, in: ICPR, 2002.
  • 38
    • 3242767684 scopus 로고    scopus 로고
    • An optimization criterion for generalized discriminant analysis on undersampled problems
    • Ye J., Janardan R., Park C.H., and Park H. An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26 8 (2004) 982-994
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.8 , pp. 982-994
    • Ye, J.1    Janardan, R.2    Park, C.H.3    Park, H.4
  • 39
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion
    • Loog M., and Duin R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26 6 (2004) 732-739
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.6 , pp. 732-739
    • Loog, M.1    Duin, R.P.W.2
  • 40
    • 26844439180 scopus 로고    scopus 로고
    • GA-fisher: a new LDA-based face recognition algorithm with selection of principal components
    • Zheng W.-S., Lai J.-H., and Yuen P.C. GA-fisher: a new LDA-based face recognition algorithm with selection of principal components. IEEE Trans. Syst. Man Cybern. Part B 35 5 (2005) 1065-1078
    • (2005) IEEE Trans. Syst. Man Cybern. Part B , vol.35 , Issue.5 , pp. 1065-1078
    • Zheng, W.-S.1    Lai, J.-H.2    Yuen, P.C.3
  • 41
    • 41549145258 scopus 로고    scopus 로고
    • C. Liu, H. Wechsler, Enhanced Fisher linear discriminant models for face recognition, in: ICPR, 1998.
    • C. Liu, H. Wechsler, Enhanced Fisher linear discriminant models for face recognition, in: ICPR, 1998.
  • 42
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high dimensional data with application to face recognition
    • Yu H., and Yang J. A direct LDA algorithm for high dimensional data with application to face recognition. Pattern Recognition 34 10 (2001) 2067-2070
    • (2001) Pattern Recognition , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 43
    • 1542346779 scopus 로고    scopus 로고
    • LDA/QR: an efficient and effective dimension reduction algorithm and its theoretical foundation
    • Ye J., and Li Q. LDA/QR: an efficient and effective dimension reduction algorithm and its theoretical foundation. Pattern Recognition 37 (2004) 851-854
    • (2004) Pattern Recognition , vol.37 , pp. 851-854
    • Ye, J.1    Li, Q.2
  • 44
    • 41549100036 scopus 로고    scopus 로고
    • W. Zhao, R. Chellappa, P.J. Phillips, Subspace linear discriminant analysis for face recognition, Technical Report CAR-TR-914, CS-TR-4009, University of Maryland, College Park, MD.
    • W. Zhao, R. Chellappa, P.J. Phillips, Subspace linear discriminant analysis for face recognition, Technical Report CAR-TR-914, CS-TR-4009, University of Maryland, College Park, MD.
  • 45
    • 10044254164 scopus 로고    scopus 로고
    • Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition
    • Lu J., Plataniotis K.N., and Venetsanopoulos A.N. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Pattern Recognition Letters 26 (2005) 181-191
    • (2005) Pattern Recognition Letters , vol.26 , pp. 181-191
    • Lu, J.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 46
    • 0036522825 scopus 로고    scopus 로고
    • Regularized discriminant analysis and its application to face recognition
    • Dai D.-Q., and Yuen P.C. Regularized discriminant analysis and its application to face recognition. Pattern Recognition 36 (2003) 845-847
    • (2003) Pattern Recognition , vol.36 , pp. 845-847
    • Dai, D.-Q.1    Yuen, P.C.2
  • 47
    • 41549154632 scopus 로고    scopus 로고
    • P. Zhang, J. Peng, N. Riedel, Discriminant analysis: a least squares approximation view, in: CVPR, 2005.
    • P. Zhang, J. Peng, N. Riedel, Discriminant analysis: a least squares approximation view, in: CVPR, 2005.
  • 48
    • 0035400784 scopus 로고    scopus 로고
    • Face recognition based on the uncorrelated discriminant transformation
    • Jin Z., Yang J.Y., Hu Z.S., and Lou Z. Face recognition based on the uncorrelated discriminant transformation. Pattern Recognition 34 (2001) 1405-1416
    • (2001) Pattern Recognition , vol.34 , pp. 1405-1416
    • Jin, Z.1    Yang, J.Y.2    Hu, Z.S.3    Lou, Z.4
  • 49
    • 0024104032 scopus 로고
    • An optimal transformation for discriminant and principal component analysis
    • Duchene J., and Leclercq S. An optimal transformation for discriminant and principal component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 10 6 (1988) 978-983
    • (1988) IEEE Trans. Pattern Anal. Mach. Intell. , vol.10 , Issue.6 , pp. 978-983
    • Duchene, J.1    Leclercq, S.2
  • 50
    • 6444237040 scopus 로고    scopus 로고
    • Face recognition using direct, weighted linear discriminant analysis and modular subspaces
    • Price J.R., and Gee T.F. Face recognition using direct, weighted linear discriminant analysis and modular subspaces. Pattern Recognition 38 (2005) 209-219
    • (2005) Pattern Recognition , vol.38 , pp. 209-219
    • Price, J.R.1    Gee, T.F.2
  • 52
    • 15044364586 scopus 로고    scopus 로고
    • Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image
    • Kim T.-K., and Kittler J. Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans. Pattern Anal. Mach. Intell. 27 3 (2005) 318-327
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.3 , pp. 318-327
    • Kim, T.-K.1    Kittler, J.2
  • 53
    • 31844454005 scopus 로고    scopus 로고
    • F. De la Torre Frade, T. Kanade, Multimodal oriented discriminant analysis, in: International Conference on Machine Learning (ICML), August, 2005.
    • F. De la Torre Frade, T. Kanade, Multimodal oriented discriminant analysis, in: International Conference on Machine Learning (ICML), August, 2005.
  • 54
    • 24644434414 scopus 로고    scopus 로고
    • S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H.-J. Zhang, Discriminant analysis with tensor representation, in: CVPR, 2005.
    • S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H.-J. Zhang, Discriminant analysis with tensor representation, in: CVPR, 2005.
  • 56
  • 57
    • 30144436546 scopus 로고    scopus 로고
    • Where are linear feature extraction methods applicable?
    • Martínez A.M., and Zhu M. Where are linear feature extraction methods applicable?. IEEE Trans. Pattern Anal. Mach. Intell. 27 12 (2005) 1934-1944
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.12 , pp. 1934-1944
    • Martínez, A.M.1    Zhu, M.2
  • 58
    • 0036487285 scopus 로고    scopus 로고
    • Why can LDA be performed in PCA transformed space?
    • Yang J., and Yang J.Y. Why can LDA be performed in PCA transformed space?. Pattern Recognition 36 2 (2003) 563-566
    • (2003) Pattern Recognition , vol.36 , Issue.2 , pp. 563-566
    • Yang, J.1    Yang, J.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.