메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Feature extraction by maximizing the average neighborhood margin

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER VISION; PROBLEM SOLVING; SECURITY OF DATA; TENSORS;

EID: 35148826924     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383124     Document Type: Conference Paper
Times cited : (91)

References (23)
  • 1
    • 63249112814 scopus 로고
    • Dimensionality and Sample Size Considerations in Pattern Recognition Practice
    • Amsterdam, North Holland
    • A. K. Jain, B. Chandrasekaran. Dimensionality and Sample Size Considerations in Pattern Recognition Practice. In Handbook of Statistics. Amsterdam, North Holland. 1982. 1
    • (1982) Handbook of Statistics , pp. 1
    • Jain, A.K.1    Chandrasekaran, B.2
  • 2
    • 0004094721 scopus 로고    scopus 로고
    • The MIT Press. Cambridge, Massachusetts. London, England
    • B. Schölkopf, A. Smola. Learning with Kernels. The MIT Press. Cambridge, Massachusetts. London, England. 2002. 1, 4
    • (2002) Learning with Kernels , vol.1 , pp. 4
    • Schölkopf, B.1    Smola, A.2
  • 3
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • 10
    • B. Schölkopf, A. Smola, K.-R. Müller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 10:1299-1319. 1998. 1
    • (1998) Neural Computation , vol.1299-1319 , pp. 1
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 4
    • 35148844543 scopus 로고    scopus 로고
    • D. Cai, X. He, J. Han. Subspace Learning Based on Tensor Analysis. Department of Computer Science Technical Report No. 2572, University of Illinois at Urbana-Champaign (UIUCDCS-R-2005-2572). 2005. 6
    • D. Cai, X. He, J. Han. Subspace Learning Based on Tensor Analysis. Department of Computer Science Technical Report No. 2572, University of Illinois at Urbana-Champaign (UIUCDCS-R-2005-2572). 2005. 6
  • 5
    • 35148848097 scopus 로고    scopus 로고
    • Vasilescu. Linear and Multilinear (Tensor) Methods for Vision, Graphics, and Signal Processing
    • Fernando De la Torre, M. Alex O. Vasilescu. Linear and Multilinear (Tensor) Methods for Vision, Graphics, and Signal Processing. IEEE CVPR Tutorial. 2006. 1
    • (2006) IEEE CVPR Tutorial , pp. 1
    • Fernando De la Torre, M.1    Alex, O.2
  • 6
    • 84898988661 scopus 로고    scopus 로고
    • Efficient and Robust Feature Extraction by Maximum Margin Criterion
    • H. Li, T Jiang, K. Zhang. Efficient and Robust Feature Extraction by Maximum Margin Criterion. In NIPS 16. 2004. 2, 6
    • (2004) NIPS 16 , vol.2 , pp. 6
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 7
    • 0034704189 scopus 로고    scopus 로고
    • The manifold ways of perception
    • H. S. Seung, D. D. Lee. The manifold ways of perception. Science, 290. 2000. 1
    • (2000) Science , vol.290 , pp. 1
    • Seung, H.S.1    Lee, D.D.2
  • 8
    • 33646061690 scopus 로고    scopus 로고
    • Out-of-Core Tensor Approximation of Multi-Dimensional Matrices of Visual Data
    • H. Wang, Q., Wu, L., Shi, Y., Yu, N., Ahuja. Out-of-Core Tensor Approximation of Multi-Dimensional Matrices of Visual Data. In Proceedings of ACM SIGGRAPH. 2005. 5
    • (2005) Proceedings of ACM SIGGRAPH , pp. 5
    • Wang, H.1    Wu, Q.2    Shi, L.3    Yu, Y.4    Ahuja, N.5
  • 9
    • 0001765951 scopus 로고    scopus 로고
    • A Direct LDA Algorithm for High Dimensional Data with Application to Face Recognition
    • H. Yu, J. Yang. A Direct LDA Algorithm for High Dimensional Data with Application to Face Recognition. Pattern Recognition. 2001. 2
    • (2001) Pattern Recognition , pp. 2
    • Yu, H.1    Yang, J.2
  • 11
    • 62849127936 scopus 로고    scopus 로고
    • Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition
    • J. Yang, D. Zhang, Alejandro F. Frangi, J. Yang. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE TPAMI. 2004.
    • (2004) IEEE TPAMI
    • Yang, J.1    Zhang, D.2    Alejandro, F.3    Frangi4    Yang, J.5
  • 12
    • 24644433824 scopus 로고    scopus 로고
    • Generalized Low Rank Approximations of Matrices
    • J. Ye. Generalized Low Rank Approximations of Matrices. In Proceedings of ICML. 2004. 5
    • (2004) Proceedings of ICML , pp. 5
    • Ye, J.1
  • 13
    • 35148835056 scopus 로고    scopus 로고
    • K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New York, 2nd edtion. 1990. 1, 2
    • K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New York, 2nd edtion. 1990. 1, 2
  • 14
    • 0026897846 scopus 로고
    • A Generalized Optimal Set of Discriminant Vectors
    • K. Liu, Y. Cheng, J. Yang. A Generalized Optimal Set of Discriminant Vectors. Pattern Recognition. 1992. 2
    • (1992) Pattern Recognition , pp. 2
    • Liu, K.1    Cheng, Y.2    Yang, J.3
  • 15
    • 33745944021 scopus 로고    scopus 로고
    • Detecting irregularities in images and in video
    • K. Q. Weinberger, J. Blitzer, L. K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classification In NIPS 18. 2006. 2, 8
    • (2005) ICCV
    • Boiman, O.1    Irani, M.2
  • 18
    • 35148884140 scopus 로고    scopus 로고
    • Fisherfaces: Recognition Using Class Specific Linear Projection
    • P.N. Belhumeur, J. Hespanda, D. Kiregeman. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. on RAMI. 1997. 1, 2, 6
    • (1997) IEEE Trans. on RAMI , vol.1 , Issue.2 , pp. 6
    • Belhumeur, P.N.1    Hespanda, J.2    Kiregeman, D.3    vs, E.4
  • 19
    • 0033337021 scopus 로고    scopus 로고
    • S. Mika, G. Rätsch, J. Weston, B. Schölkopf, K.-R. Müller. Fisher Discriminant Analysis with Kernels. Neural Networks for Signal Processing IX, IEEE. 1999. 1
    • S. Mika, G. Rätsch, J. Weston, B. Schölkopf, K.-R. Müller. Fisher Discriminant Analysis with Kernels. Neural Networks for Signal Processing IX, IEEE. 1999. 1
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T Roweis, L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290. 2000. 1
    • (2000) Science , vol.290 , pp. 1
    • Roweis, S.T.1    Saul, L.K.2
  • 21
    • 24644478682 scopus 로고    scopus 로고
    • Graph Embedding: A General Framework for Dimensionality Reduction
    • S. Yan, D. Xu, B. Zhang and H. Zhang. Graph Embedding: A General Framework for Dimensionality Reduction. In Proceedings of IEEE CVPR. 2005. 6
    • (2005) Proceedings of IEEE CVPR , pp. 6
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.4
  • 22
    • 35148812916 scopus 로고    scopus 로고
    • T. Sim, S. Baker, andM. Bsat. The CMU pose, illuminlation, and expression database. IEEE Trans. on PAMI. 2003. 6
    • T. Sim, S. Baker, andM. Bsat. The CMU pose, illuminlation, and expression database. IEEE Trans. on PAMI. 2003. 6
  • 23
    • 33745901082 scopus 로고    scopus 로고
    • Face Recognition by Stepwise Nonparametric Margin Maximum Criterion
    • X. Qiu, L. Wu. Face Recognition by Stepwise Nonparametric Margin Maximum Criterion. In Proc. ICCV. 2005. 2, 6
    • (2005) Proc. ICCV , vol.2 , pp. 6
    • Qiu, X.1    Wu, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.