메뉴 건너뛰기




Volumn 72, Issue 10-12, 2009, Pages 2670-2681

Orthogonal-least-squares regression: A unified approach for data modelling

Author keywords

Classification; Density estimation; Leave one out cross validation; Multiplicative nonnegative quadratic programming; Orthogonal least squares algorithm; Regression; Regularisation; Sparse kernel modelling

Indexed keywords

CLASSIFICATION; DENSITY ESTIMATION; LEAVE-ONE-OUT CROSS-VALIDATION; MULTIPLICATIVE NONNEGATIVE QUADRATIC PROGRAMMING; ORTHOGONAL-LEAST-SQUARES ALGORITHM; REGRESSION; REGULARISATION; SPARSE KERNEL MODELLING;

EID: 67349249355     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.10.002     Document Type: Article
Times cited : (32)

References (55)
  • 1
    • 0004838693 scopus 로고    scopus 로고
    • The determination of multivariable nonlinear models for dynamic systems
    • Leondes C.T. (Ed), Academic Press, San Diego, CA
    • Billings S.A., and Chen S. The determination of multivariable nonlinear models for dynamic systems. In: Leondes C.T. (Ed). Control and Dynamic Systems, Neural Network Systems Techniques and Applications vol. 7 (1998), Academic Press, San Diego, CA 231-278
    • (1998) Control and Dynamic Systems, Neural Network Systems Techniques and Applications , vol.7 , pp. 231-278
    • Billings, S.A.1    Chen, S.2
  • 2
    • 0001731811 scopus 로고
    • The identification of linear and non-linear models of a turbocharged automotive diesel engine
    • Billings S.A., Chen S., and Backhouse R.J. The identification of linear and non-linear models of a turbocharged automotive diesel engine. Mech. Syst. Signal Process. 3 20 (1989) 123-142
    • (1989) Mech. Syst. Signal Process. , vol.3 , Issue.20 , pp. 123-142
    • Billings, S.A.1    Chen, S.2    Backhouse, R.J.3
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning 46 1-3 (2002) 131-159
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 69 4-6 (2006) 559-585
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 559-585
    • Chen, S.1
  • 8
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S.A., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50 5 (1989) 1873-1896
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 9
    • 0030195189 scopus 로고    scopus 로고
    • Regularised orthogonal least squares algorithm for constructing radial basis function networks
    • Chen S., Chng E.S., and Alkadhimi K. Regularised orthogonal least squares algorithm for constructing radial basis function networks. Int. J. Control 64 5 (1996) 829-837
    • (1996) Int. J. Control , vol.64 , Issue.5 , pp. 829-837
    • Chen, S.1    Chng, E.S.2    Alkadhimi, K.3
  • 10
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2 2 (1991) 302-309
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 11
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • Chen S., Hong X., and Harris C.J. Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans. Autom. Control 48 6 (2003) 1029-1036
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.6 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 12
    • 3442881906 scopus 로고    scopus 로고
    • Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    • Chen S., Hong X., and Harris C.J. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Trans. Syst Man Cybern Part B 34 4 (2004) 1708-1717
    • (2004) IEEE Trans. Syst Man Cybern Part B , vol.34 , Issue.4 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 13
    • 38649088632 scopus 로고    scopus 로고
    • An orthogonal forward regression technique for sparse kernel density estimation
    • Chen S., Hong X., and Harris C.J. An orthogonal forward regression technique for sparse kernel density estimation. Neurocomputing 71 4-6 (2008) 931-943
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 931-943
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 14
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modelling using orthogonal forward regression with PRESS statistic and regularization
    • Chen S., Hong X., Harris C.J., and Sharkey P.M. Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Systems Man Cybern. Part B 34 2 (2004) 898-911
    • (2004) IEEE Trans. Systems Man Cybern. Part B , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 15
    • 0029343956 scopus 로고
    • Fast orthogonal least squares algorithm for efficient subset model selection
    • Chen S., and Wigger J. Fast orthogonal least squares algorithm for efficient subset model selection. IEEE Trans. Signal Process. 43 7 (1995) 1713-1715
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.7 , pp. 1713-1715
    • Chen, S.1    Wigger, J.2
  • 16
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimisation and regularised orthogonal least squares learning for radial basis function networks
    • Chen S., Wu Y., and Luk B.L. Combined genetic algorithm optimisation and regularised orthogonal least squares learning for radial basis function networks. IEEE Trans. Neural Networks 10 5 (1999) 1239-1243
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 17
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • Chen S.S., Donoho D.L., and Saunders M.A. Atomic decomposition by basis pursuit. SIAM Rev. 43 1 (2001) 129-159
    • (2001) SIAM Rev. , vol.43 , Issue.1 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 18
    • 3442875753 scopus 로고    scopus 로고
    • Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, UK
    • A. Choudhury, Fast machine learning algorithms for large data, Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, UK, 2002.
    • (2002) Fast machine learning algorithms for large data
    • Choudhury, A.1
  • 20
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K., Keerthi S.S., and Poo A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51 (2003) 41-59
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 22
    • 0142039770 scopus 로고    scopus 로고
    • Probability density estimation from optimally condensed data samples
    • Girolami M., and He C. Probability density estimation from optimally condensed data samples. IEEE Trans. Pattern Anal. Mach. Intell. 25 10 (2003) 1253-1264
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.10 , pp. 1253-1264
    • Girolami, M.1    He, C.2
  • 23
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Technical Report, ISIS Research Group, School of Electronics and Computer Science, University of Southampton, UK
    • S. Gunn, Support vector machines for classification and regression, Technical Report, ISIS Research Group, School of Electronics and Computer Science, University of Southampton, UK, 1998.
    • (1998)
    • Gunn, S.1
  • 24
    • 21344466221 scopus 로고    scopus 로고
    • Linear unlearning for cross-validation
    • Hansen L.K., and Larsen J. Linear unlearning for cross-validation. Adv. Comput. Math. 5 (1996) 269-280
    • (1996) Adv. Comput. Math. , vol.5 , pp. 269-280
    • Hansen, L.K.1    Larsen, J.2
  • 25
    • 33749569731 scopus 로고    scopus 로고
    • Fast kernel classifier construction using orthogonal forward selection to minimise leave-one-out misclassification rate
    • Kunming, China
    • Hong X., Chen S., and Harris C.J. Fast kernel classifier construction using orthogonal forward selection to minimise leave-one-out misclassification rate. Proceedings of the 2nd International Conference on Intelligent Computing. Kunming, China (August 16-19, 2006) 106-114
    • (2006) Proceedings of the 2nd International Conference on Intelligent Computing , pp. 106-114
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 26
    • 38349160227 scopus 로고    scopus 로고
    • A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate
    • Hong X., Chen S., and Harris C.J. A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate. Int. J. Syst. Sci. 39 2 (2008) 119-125
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.2 , pp. 119-125
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 27
    • 39549091331 scopus 로고    scopus 로고
    • A forward-constrained regression algorithm for sparse kernel density estimation
    • Hong X., Chen S., and Harris C.J. A forward-constrained regression algorithm for sparse kernel density estimation. IEEE Trans. Neural Networks 19 1 (2008) 193-198
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.1 , pp. 193-198
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 28
    • 47749106824 scopus 로고    scopus 로고
    • Model selection approaches for non-linear system identification: a review
    • Hong X., Mitchell R.J., Chen S., Harris C.J., Li K., and Irwin G.W. Model selection approaches for non-linear system identification: a review. Int. J. Syst. Sci. 39 10 (2008) 925-946
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.10 , pp. 925-946
    • Hong, X.1    Mitchell, R.J.2    Chen, S.3    Harris, C.J.4    Li, K.5    Irwin, G.W.6
  • 29
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic
    • Hong X., Sharkey P.M., and Warwick K. Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic. IEE Proc. Control Theory Appl. 150 3 (2003) 245-254
    • (2003) IEE Proc. Control Theory Appl. , vol.150 , Issue.3 , pp. 245-254
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 30
    • 67349206926 scopus 로고    scopus 로고
    • 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉
  • 31
    • 67349212630 scopus 로고    scopus 로고
    • 〈http://ida.first.fhg.de/projects/bench/benchmarks.htm〉
  • 33
    • 67349266993 scopus 로고    scopus 로고
    • Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems
    • to appear
    • K. Li, J. Peng, E.-W. Bai, Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems, IEEE Trans. Circuits Syst. (2008), to appear.
    • (2008) IEEE Trans. Circuits Syst
    • Li, K.1    Peng, J.2    Bai, E.-W.3
  • 34
    • 0001025418 scopus 로고
    • Bayesian interpretation
    • MacKay D.J.C. Bayesian interpretation. Neural Comput. 4 3 (1992) 415-447
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 36
    • 0034332411 scopus 로고    scopus 로고
    • Withdrawing an example from the training set: an analytic estimation of its effect on a non-linear parameterised model
    • Monari G., and Dreyfus G. Withdrawing an example from the training set: an analytic estimation of its effect on a non-linear parameterised model. Neurocomputing 35 (2000) 195-201
    • (2000) Neurocomputing , vol.35 , pp. 195-201
    • Monari, G.1    Dreyfus, G.2
  • 37
    • 0013370796 scopus 로고    scopus 로고
    • Local overfitting control via leverages
    • Monari G., and Dreyfus G. Local overfitting control via leverages. Neural Comput. 14 (2002) 1481-1506
    • (2002) Neural Comput. , vol.14 , pp. 1481-1506
    • Monari, G.1    Dreyfus, G.2
  • 38
    • 0040908595 scopus 로고    scopus 로고
    • Support vector method for multivariate density estimation
    • Technical Report, A.I. Memo No. 1653, MIT AI Lab, 1999
    • S. Mukherjee, V. Vapnik, Support vector method for multivariate density estimation, Technical Report, A.I. Memo No. 1653, MIT AI Lab, 1999.
    • Mukherjee, S.1    Vapnik, V.2
  • 41
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1066-1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1066-1076
    • Parzen, E.1
  • 42
    • 37249029174 scopus 로고    scopus 로고
    • A hybrid forward algorithm for RBF neural network construction
    • Peng J., Li K., and Huang D.S. A hybrid forward algorithm for RBF neural network construction. IEEE Trans. Neural Networks 17 6 (2006) 1439-1451
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.6 , pp. 1439-1451
    • Peng, J.1    Li, K.2    Huang, D.S.3
  • 47
    • 67349133931 scopus 로고    scopus 로고
    • F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report, MS-CIS-02-19, University of Pennsylvania, USA, 2002.
    • F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report, MS-CIS-02-19, University of Pennsylvania, USA, 2002.
  • 49
    • 0000629975 scopus 로고
    • Cross validation choice and assessment of statistical predictions
    • Stone M. Cross validation choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 36 (1974) 117-147
    • (1974) J. R. Stat. Soc. Ser. B , vol.36 , pp. 117-147
    • Stone, M.1
  • 51
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 (2001) 211-244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 53
    • 84898937307 scopus 로고    scopus 로고
    • Support vector method for multivariate density estimation
    • Solla S., Leen T., and Müller K.R. (Eds), MIT Press, Cambridge, MA
    • Vapnik V., and Mukherjee S. Support vector method for multivariate density estimation. In: Solla S., Leen T., and Müller K.R. (Eds). Advances in Neural Information Processing Systems (2000), MIT Press, Cambridge, MA 659-665
    • (2000) Advances in Neural Information Processing Systems , pp. 659-665
    • Vapnik, V.1    Mukherjee, S.2
  • 54
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • Vincent P., and Bengio Y. Kernel matching pursuit. Mach. Learn. 48 1 (2002) 165-187
    • (2002) Mach. Learn. , vol.48 , Issue.1 , pp. 165-187
    • Vincent, P.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.