-
1
-
-
0004838693
-
The determination of multivariable nonlinear models for dynamic systems
-
Leondes C.T. (Ed), Academic Press, San Diego, CA
-
Billings S.A., and Chen S. The determination of multivariable nonlinear models for dynamic systems. In: Leondes C.T. (Ed). Control and Dynamic Systems, Neural Network Systems Techniques and Applications vol. 7 (1998), Academic Press, San Diego, CA 231-278
-
(1998)
Control and Dynamic Systems, Neural Network Systems Techniques and Applications
, vol.7
, pp. 231-278
-
-
Billings, S.A.1
Chen, S.2
-
2
-
-
0001731811
-
The identification of linear and non-linear models of a turbocharged automotive diesel engine
-
Billings S.A., Chen S., and Backhouse R.J. The identification of linear and non-linear models of a turbocharged automotive diesel engine. Mech. Syst. Signal Process. 3 20 (1989) 123-142
-
(1989)
Mech. Syst. Signal Process.
, vol.3
, Issue.20
, pp. 123-142
-
-
Billings, S.A.1
Chen, S.2
Backhouse, R.J.3
-
5
-
-
0004311217
-
-
Holden Day, San Francisco, CA
-
Box G.E.P., and Jenkins G.M. Time Series Analysis, Forecasting and Control (1976), Holden Day, San Francisco, CA
-
(1976)
Time Series Analysis, Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
-
6
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning 46 1-3 (2002) 131-159
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
7
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 69 4-6 (2006) 559-585
-
(2006)
Neurocomputing
, vol.69
, Issue.4-6
, pp. 559-585
-
-
Chen, S.1
-
8
-
-
0024771664
-
Orthogonal least squares methods and their application to non-linear system identification
-
Chen S., Billings S.A., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50 5 (1989) 1873-1896
-
(1989)
Int. J. Control
, vol.50
, Issue.5
, pp. 1873-1896
-
-
Chen, S.1
Billings, S.A.2
Luo, W.3
-
9
-
-
0030195189
-
Regularised orthogonal least squares algorithm for constructing radial basis function networks
-
Chen S., Chng E.S., and Alkadhimi K. Regularised orthogonal least squares algorithm for constructing radial basis function networks. Int. J. Control 64 5 (1996) 829-837
-
(1996)
Int. J. Control
, vol.64
, Issue.5
, pp. 829-837
-
-
Chen, S.1
Chng, E.S.2
Alkadhimi, K.3
-
10
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2 2 (1991) 302-309
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
11
-
-
0038548172
-
Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design
-
Chen S., Hong X., and Harris C.J. Sparse kernel regression modelling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans. Autom. Control 48 6 (2003) 1029-1036
-
(2003)
IEEE Trans. Autom. Control
, vol.48
, Issue.6
, pp. 1029-1036
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
12
-
-
3442881906
-
Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
-
Chen S., Hong X., and Harris C.J. Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Trans. Syst Man Cybern Part B 34 4 (2004) 1708-1717
-
(2004)
IEEE Trans. Syst Man Cybern Part B
, vol.34
, Issue.4
, pp. 1708-1717
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
13
-
-
38649088632
-
An orthogonal forward regression technique for sparse kernel density estimation
-
Chen S., Hong X., and Harris C.J. An orthogonal forward regression technique for sparse kernel density estimation. Neurocomputing 71 4-6 (2008) 931-943
-
(2008)
Neurocomputing
, vol.71
, Issue.4-6
, pp. 931-943
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
-
14
-
-
1842430977
-
Sparse modelling using orthogonal forward regression with PRESS statistic and regularization
-
Chen S., Hong X., Harris C.J., and Sharkey P.M. Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Systems Man Cybern. Part B 34 2 (2004) 898-911
-
(2004)
IEEE Trans. Systems Man Cybern. Part B
, vol.34
, Issue.2
, pp. 898-911
-
-
Chen, S.1
Hong, X.2
Harris, C.J.3
Sharkey, P.M.4
-
15
-
-
0029343956
-
Fast orthogonal least squares algorithm for efficient subset model selection
-
Chen S., and Wigger J. Fast orthogonal least squares algorithm for efficient subset model selection. IEEE Trans. Signal Process. 43 7 (1995) 1713-1715
-
(1995)
IEEE Trans. Signal Process.
, vol.43
, Issue.7
, pp. 1713-1715
-
-
Chen, S.1
Wigger, J.2
-
16
-
-
0032594851
-
Combined genetic algorithm optimisation and regularised orthogonal least squares learning for radial basis function networks
-
Chen S., Wu Y., and Luk B.L. Combined genetic algorithm optimisation and regularised orthogonal least squares learning for radial basis function networks. IEEE Trans. Neural Networks 10 5 (1999) 1239-1243
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 1239-1243
-
-
Chen, S.1
Wu, Y.2
Luk, B.L.3
-
17
-
-
0035273106
-
Atomic decomposition by basis pursuit
-
Chen S.S., Donoho D.L., and Saunders M.A. Atomic decomposition by basis pursuit. SIAM Rev. 43 1 (2001) 129-159
-
(2001)
SIAM Rev.
, vol.43
, Issue.1
, pp. 129-159
-
-
Chen, S.S.1
Donoho, D.L.2
Saunders, M.A.3
-
18
-
-
3442875753
-
-
Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, UK
-
A. Choudhury, Fast machine learning algorithms for large data, Ph.D. Thesis, Computational Engineering and Design Center, School of Engineering Sciences, University of Southampton, UK, 2002.
-
(2002)
Fast machine learning algorithms for large data
-
-
Choudhury, A.1
-
20
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
Duan K., Keerthi S.S., and Poo A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51 (2003) 41-59
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
22
-
-
0142039770
-
Probability density estimation from optimally condensed data samples
-
Girolami M., and He C. Probability density estimation from optimally condensed data samples. IEEE Trans. Pattern Anal. Mach. Intell. 25 10 (2003) 1253-1264
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, Issue.10
, pp. 1253-1264
-
-
Girolami, M.1
He, C.2
-
23
-
-
0003425664
-
Support vector machines for classification and regression
-
Technical Report, ISIS Research Group, School of Electronics and Computer Science, University of Southampton, UK
-
S. Gunn, Support vector machines for classification and regression, Technical Report, ISIS Research Group, School of Electronics and Computer Science, University of Southampton, UK, 1998.
-
(1998)
-
-
Gunn, S.1
-
24
-
-
21344466221
-
Linear unlearning for cross-validation
-
Hansen L.K., and Larsen J. Linear unlearning for cross-validation. Adv. Comput. Math. 5 (1996) 269-280
-
(1996)
Adv. Comput. Math.
, vol.5
, pp. 269-280
-
-
Hansen, L.K.1
Larsen, J.2
-
25
-
-
33749569731
-
Fast kernel classifier construction using orthogonal forward selection to minimise leave-one-out misclassification rate
-
Kunming, China
-
Hong X., Chen S., and Harris C.J. Fast kernel classifier construction using orthogonal forward selection to minimise leave-one-out misclassification rate. Proceedings of the 2nd International Conference on Intelligent Computing. Kunming, China (August 16-19, 2006) 106-114
-
(2006)
Proceedings of the 2nd International Conference on Intelligent Computing
, pp. 106-114
-
-
Hong, X.1
Chen, S.2
Harris, C.J.3
-
26
-
-
38349160227
-
A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate
-
Hong X., Chen S., and Harris C.J. A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate. Int. J. Syst. Sci. 39 2 (2008) 119-125
-
(2008)
Int. J. Syst. Sci.
, vol.39
, Issue.2
, pp. 119-125
-
-
Hong, X.1
Chen, S.2
Harris, C.J.3
-
27
-
-
39549091331
-
A forward-constrained regression algorithm for sparse kernel density estimation
-
Hong X., Chen S., and Harris C.J. A forward-constrained regression algorithm for sparse kernel density estimation. IEEE Trans. Neural Networks 19 1 (2008) 193-198
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.1
, pp. 193-198
-
-
Hong, X.1
Chen, S.2
Harris, C.J.3
-
28
-
-
47749106824
-
Model selection approaches for non-linear system identification: a review
-
Hong X., Mitchell R.J., Chen S., Harris C.J., Li K., and Irwin G.W. Model selection approaches for non-linear system identification: a review. Int. J. Syst. Sci. 39 10 (2008) 925-946
-
(2008)
Int. J. Syst. Sci.
, vol.39
, Issue.10
, pp. 925-946
-
-
Hong, X.1
Mitchell, R.J.2
Chen, S.3
Harris, C.J.4
Li, K.5
Irwin, G.W.6
-
29
-
-
0037861058
-
Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic
-
Hong X., Sharkey P.M., and Warwick K. Automatic nonlinear predictive model construction algorithm using forward regression and the PRESS statistic. IEE Proc. Control Theory Appl. 150 3 (2003) 245-254
-
(2003)
IEE Proc. Control Theory Appl.
, vol.150
, Issue.3
, pp. 245-254
-
-
Hong, X.1
Sharkey, P.M.2
Warwick, K.3
-
30
-
-
67349206926
-
-
〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉
-
-
-
-
31
-
-
67349212630
-
-
〈http://ida.first.fhg.de/projects/bench/benchmarks.htm〉
-
-
-
-
32
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G.R.G., Cristianini N., Bartlett P., Ghaoui L.E., and Jordan M.I. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5 (2004) 27-72
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
33
-
-
67349266993
-
Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems
-
to appear
-
K. Li, J. Peng, E.-W. Bai, Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems, IEEE Trans. Circuits Syst. (2008), to appear.
-
(2008)
IEEE Trans. Circuits Syst
-
-
Li, K.1
Peng, J.2
Bai, E.-W.3
-
34
-
-
0001025418
-
Bayesian interpretation
-
MacKay D.J.C. Bayesian interpretation. Neural Comput. 4 3 (1992) 415-447
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
36
-
-
0034332411
-
Withdrawing an example from the training set: an analytic estimation of its effect on a non-linear parameterised model
-
Monari G., and Dreyfus G. Withdrawing an example from the training set: an analytic estimation of its effect on a non-linear parameterised model. Neurocomputing 35 (2000) 195-201
-
(2000)
Neurocomputing
, vol.35
, pp. 195-201
-
-
Monari, G.1
Dreyfus, G.2
-
37
-
-
0013370796
-
Local overfitting control via leverages
-
Monari G., and Dreyfus G. Local overfitting control via leverages. Neural Comput. 14 (2002) 1481-1506
-
(2002)
Neural Comput.
, vol.14
, pp. 1481-1506
-
-
Monari, G.1
Dreyfus, G.2
-
38
-
-
0040908595
-
Support vector method for multivariate density estimation
-
Technical Report, A.I. Memo No. 1653, MIT AI Lab, 1999
-
S. Mukherjee, V. Vapnik, Support vector method for multivariate density estimation, Technical Report, A.I. Memo No. 1653, MIT AI Lab, 1999.
-
-
-
Mukherjee, S.1
Vapnik, V.2
-
40
-
-
65649114039
-
Hyperkernels
-
MIT Press, Cambridge, MA
-
Ong C.S., Smola A.J., and Williamson R.C. Hyperkernels. Neural Information Processing Systems vol. 15 (2002), MIT Press, Cambridge, MA
-
(2002)
Neural Information Processing Systems
, vol.15
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
41
-
-
0001473437
-
On estimation of a probability density function and mode
-
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1066-1076
-
(1962)
Ann. Math. Stat.
, vol.33
, pp. 1066-1076
-
-
Parzen, E.1
-
42
-
-
37249029174
-
A hybrid forward algorithm for RBF neural network construction
-
Peng J., Li K., and Huang D.S. A hybrid forward algorithm for RBF neural network construction. IEEE Trans. Neural Networks 17 6 (2006) 1439-1451
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.6
, pp. 1439-1451
-
-
Peng, J.1
Li, K.2
Huang, D.S.3
-
45
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
Schölkopf B., and Smola A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (2002), MIT Press, Cambridge, MA
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
46
-
-
17444438778
-
New support vector algorithms
-
Schölkopf B., Smola A.J., Williamson R.C., and Bartlett P.L. New support vector algorithms. Neural Comput. 12 5 (2000) 1207-1245
-
(2000)
Neural Comput.
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
47
-
-
67349133931
-
-
F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report, MS-CIS-02-19, University of Pennsylvania, USA, 2002.
-
F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for nonnegative quadratic programming in support vector machines, Technical Report, MS-CIS-02-19, University of Pennsylvania, USA, 2002.
-
-
-
-
49
-
-
0000629975
-
Cross validation choice and assessment of statistical predictions
-
Stone M. Cross validation choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 36 (1974) 117-147
-
(1974)
J. R. Stat. Soc. Ser. B
, vol.36
, pp. 117-147
-
-
Stone, M.1
-
50
-
-
0037695279
-
-
World Scientific Publishing Co., Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., and Vandewalle J. Least Squares Support Vector Machines (2002), World Scientific Publishing Co., Singapore
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
51
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 (2001) 211-244
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
53
-
-
84898937307
-
Support vector method for multivariate density estimation
-
Solla S., Leen T., and Müller K.R. (Eds), MIT Press, Cambridge, MA
-
Vapnik V., and Mukherjee S. Support vector method for multivariate density estimation. In: Solla S., Leen T., and Müller K.R. (Eds). Advances in Neural Information Processing Systems (2000), MIT Press, Cambridge, MA 659-665
-
(2000)
Advances in Neural Information Processing Systems
, pp. 659-665
-
-
Vapnik, V.1
Mukherjee, S.2
-
54
-
-
0036643065
-
Kernel matching pursuit
-
Vincent P., and Bengio Y. Kernel matching pursuit. Mach. Learn. 48 1 (2002) 165-187
-
(2002)
Mach. Learn.
, vol.48
, Issue.1
, pp. 165-187
-
-
Vincent, P.1
Bengio, Y.2
-
55
-
-
0001873884
-
Support vector density estimation
-
Schölkopf B., Burges C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
-
Weston J., Gammerman A., Stitson M.O., Vapnik V., Vovk V., and Watkins C. Support vector density estimation. In: Schölkopf B., Burges C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA 293-306
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 293-306
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.O.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
|