메뉴 건너뛰기




Volumn 46, Issue 3, 2009, Pages 217-231

Prediction of periventricular leukomalacia. Part II: Selection of hemodynamic features using computational intelligence

Author keywords

Computational intelligence; Congenital heart disease; Data mining; Decision tree; Genetic algorithms; Neural networks; Periventricular leukomalacia

Indexed keywords

CLASSIFICATION RULES; COMPUTATIONAL INTELLIGENCE; CONGENITAL HEART DISEASE; DATA SETS; FEATURE SELECTION; GENERALIZATION CAPABILITY; INTERPRETABLE RULES; MULTI LAYER PERCEPTRON; PERIVENTRICULAR LEUKOMALACIA; PREDICTION PERFORMANCE; PROBABILISTIC NEURAL NETWORKS; PROGNOSTIC FACTORS;

EID: 67349204366     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.12.004     Document Type: Article
Times cited : (24)

References (36)
  • 2
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23 (2001) 89-109
    • (2001) Artif Intell Med , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 3
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • Lisoba P.S.G. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Network 15 (2002) 11-39
    • (2002) Neural Network , vol.15 , pp. 11-39
    • Lisoba, P.S.G.1
  • 4
    • 8644269771 scopus 로고    scopus 로고
    • Adaptive systems and hybrid computational intelligence in medicine
    • Dounias G., and Linkens D. Adaptive systems and hybrid computational intelligence in medicine. Artif Intell Med 32 (2004) 151-155
    • (2004) Artif Intell Med , vol.32 , pp. 151-155
    • Dounias, G.1    Linkens, D.2
  • 6
    • 0037291442 scopus 로고    scopus 로고
    • Evolutionary computing for knowledge discovery in medical diagnosis
    • Tan K.C., Yu Q., Heng C.M., and Lee T.H. Evolutionary computing for knowledge discovery in medical diagnosis. Artif Intell Med 27 (2003) 129-154
    • (2003) Artif Intell Med , vol.27 , pp. 129-154
    • Tan, K.C.1    Yu, Q.2    Heng, C.M.3    Lee, T.H.4
  • 7
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial network classification models: a methodology review
    • Dreiseitl S., and Ohno-Machado L. Logistic regression and artificial network classification models: a methodology review. J Biomed Inform 35 (2002) 352-359
    • (2002) J Biomed Inform , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 8
    • 33750941413 scopus 로고    scopus 로고
    • Using classification trees to assess low birth weight outcomes
    • Kitsantas P., Hollander M., and Li L. Using classification trees to assess low birth weight outcomes. Artif Intell Med 38 (2006) 275-289
    • (2006) Artif Intell Med , vol.38 , pp. 275-289
    • Kitsantas, P.1    Hollander, M.2    Li, L.3
  • 9
    • 0027500150 scopus 로고
    • A comparison of logistic regression to decision-tree induction in a medical domain
    • Long W.J., Griffith J.L., Selker H.P., and D'Agostino R.B. A comparison of logistic regression to decision-tree induction in a medical domain. Comput Biomed Res 26 (1993) 74-97
    • (1993) Comput Biomed Res , vol.26 , pp. 74-97
    • Long, W.J.1    Griffith, J.L.2    Selker, H.P.3    D'Agostino, R.B.4
  • 10
    • 1242268938 scopus 로고    scopus 로고
    • Tree induction vs. logistic regression: a learning-curve analysis
    • Perlich C., Provost F., and Simonoff J.S. Tree induction vs. logistic regression: a learning-curve analysis. J Mach Learn Res 4 (2003) 211-255
    • (2003) J Mach Learn Res , vol.4 , pp. 211-255
    • Perlich, C.1    Provost, F.2    Simonoff, J.S.3
  • 11
    • 33750936249 scopus 로고    scopus 로고
    • Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room
    • Green M., Björk J., Forberg J., Ekelund U., Edenbrandt L., and Ohlsson M. Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room. Artif Intell Med 38 (2006) 305-318
    • (2006) Artif Intell Med , vol.38 , pp. 305-318
    • Green, M.1    Björk, J.2    Forberg, J.3    Ekelund, U.4    Edenbrandt, L.5    Ohlsson, M.6
  • 12
    • 0032520167 scopus 로고    scopus 로고
    • Prediction and cross-validation of neural networks versus logistic regression: using hepatic disorder as an example
    • Duh M.-S., Walker A.M., Pagano M., and Kronlund K. Prediction and cross-validation of neural networks versus logistic regression: using hepatic disorder as an example. Am J Epidemiol 147 (1998) 407-413
    • (1998) Am J Epidemiol , vol.147 , pp. 407-413
    • Duh, M.-S.1    Walker, A.M.2    Pagano, M.3    Kronlund, K.4
  • 13
    • 17044428072 scopus 로고    scopus 로고
    • Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses
    • Song J.H., Venkatesh S.S., Conant E.A., Arger P.H., and Sehgal C.M. Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses. Acad Radiol 12 (2005) 487-495
    • (2005) Acad Radiol , vol.12 , pp. 487-495
    • Song, J.H.1    Venkatesh, S.S.2    Conant, E.A.3    Arger, P.H.4    Sehgal, C.M.5
  • 14
    • 21544452774 scopus 로고    scopus 로고
    • Prediction of minor head injured patients using logistic regression and MLP neural network
    • Erol F.S., Usyal H., Erguin U., Barisci N., Serhathoglu S., and Hardalac F. Prediction of minor head injured patients using logistic regression and MLP neural network. J Med Syst 29 (2005) 205-215
    • (2005) J Med Syst , vol.29 , pp. 205-215
    • Erol, F.S.1    Usyal, H.2    Erguin, U.3    Barisci, N.4    Serhathoglu, S.5    Hardalac, F.6
  • 15
    • 15844411613 scopus 로고    scopus 로고
    • Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in emergency room
    • Fabian J., Farbiarz J., Alvarez D., and Martinez C. Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in emergency room. Crit Care 9 (2005) R150-R156
    • (2005) Crit Care , vol.9
    • Fabian, J.1    Farbiarz, J.2    Alvarez, D.3    Martinez, C.4
  • 16
    • 0036319886 scopus 로고    scopus 로고
    • Comparison of prediction models for adverse outcome in pediatric meningococcal disease using artificial neural network and logistic regression analyses
    • Nguyen T., Malley R., Inkelis S.H., and Kupppermann N. Comparison of prediction models for adverse outcome in pediatric meningococcal disease using artificial neural network and logistic regression analyses. J Clin Epidemiol 55 (2002) 687-695
    • (2002) J Clin Epidemiol , vol.55 , pp. 687-695
    • Nguyen, T.1    Malley, R.2    Inkelis, S.H.3    Kupppermann, N.4
  • 17
    • 3042708824 scopus 로고    scopus 로고
    • Genetic programming outperformed multivariable logistic regression in diagnosing pulmonary embolism
    • Biesheuvel C.J., Siccama I., Grobbee D.E., and Moons K.G.M. Genetic programming outperformed multivariable logistic regression in diagnosing pulmonary embolism. J Clin Epidemiol 57 (2004) 551-560
    • (2004) J Clin Epidemiol , vol.57 , pp. 551-560
    • Biesheuvel, C.J.1    Siccama, I.2    Grobbee, D.E.3    Moons, K.G.M.4
  • 18
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D., Walker G., and Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 34 (2005) 113-127
    • (2005) Artif Intell Med , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 19
    • 48949088710 scopus 로고    scopus 로고
    • Mining lung cancer patient data to assess healthcare resource utilization
    • Phillips-Wren G., Sharkey P., and Dy S.M. Mining lung cancer patient data to assess healthcare resource utilization. Expert Syst Appl 35 (2008) 1611-1619
    • (2008) Expert Syst Appl , vol.35 , pp. 1611-1619
    • Phillips-Wren, G.1    Sharkey, P.2    Dy, S.M.3
  • 20
    • 34248647301 scopus 로고    scopus 로고
    • Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
    • Kurt I., Ture M., and Kurum A.T. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst Appl 34 (2008) 366-374
    • (2008) Expert Syst Appl , vol.34 , pp. 366-374
    • Kurt, I.1    Ture, M.2    Kurum, A.T.3
  • 21
    • 48949116357 scopus 로고    scopus 로고
    • Automated diagnosis of cardiac state in healthcare systems
    • Samanta B., and Nataraj C. Automated diagnosis of cardiac state in healthcare systems. Int J Serv Oper Inform 3 (2008) 162-177
    • (2008) Int J Serv Oper Inform , vol.3 , pp. 162-177
    • Samanta, B.1    Nataraj, C.2
  • 22
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mech Syst Signal Process 18 (2004) 625-644
    • (2004) Mech Syst Signal Process , vol.18 , pp. 625-644
    • Samanta, B.1
  • 23
    • 2942560415 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms for gear fault detection
    • Samanta B. Artificial neural networks and genetic algorithms for gear fault detection. Mech Syst Signal Process 18 (2004) 1273-1282
    • (2004) Mech Syst Signal Process , vol.18 , pp. 1273-1282
    • Samanta, B.1
  • 24
    • 29444460051 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithm for bearing fault detection
    • Samanta B., Al-Balushi K.R., and Al-Araimi S.A. Artificial neural networks and genetic algorithm for bearing fault detection. J Soft Comput 10 (2005) 264-271
    • (2005) J Soft Comput , vol.10 , pp. 264-271
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 25
    • 50349088597 scopus 로고    scopus 로고
    • Prognostics of machine condition using soft computing
    • Samanta B., and Nataraj C. Prognostics of machine condition using soft computing. Robot Comput Integrated Manuf 24 (2008) 816-823
    • (2008) Robot Comput Integrated Manuf , vol.24 , pp. 816-823
    • Samanta, B.1    Nataraj, C.2
  • 26
    • 54949153791 scopus 로고    scopus 로고
    • Surface roughness prediction in machining using computational intelligence
    • Samanta B., and Nataraj C. Surface roughness prediction in machining using computational intelligence. Int J Manuf Res 3 (2008) 379-392
    • (2008) Int J Manuf Res , vol.3 , pp. 379-392
    • Samanta, B.1    Nataraj, C.2
  • 27
    • 56149083827 scopus 로고    scopus 로고
    • Prediction of workpiece surface roughness using soft computing
    • Samanta B., Erevelles W., and Omurtag Y. Prediction of workpiece surface roughness using soft computing. Proc IME B J Eng Manufact 222 (2008) 1221-1232
    • (2008) Proc IME B J Eng Manufact , vol.222 , pp. 1221-1232
    • Samanta, B.1    Erevelles, W.2    Omurtag, Y.3
  • 28
    • 67349199555 scopus 로고    scopus 로고
    • Prediction of periventricular leukomalacia. Part I: Selection of features using logistic regression and decision tree algorithms
    • Samanta B., Bird G.L., Kuijpers M., Zimmerman R.A., Jarvik G.P., Wernovsky G., et al. Prediction of periventricular leukomalacia. Part I: Selection of features using logistic regression and decision tree algorithms. Artif Intell Med 46 (2009) 201-215
    • (2009) Artif Intell Med , vol.46 , pp. 201-215
    • Samanta, B.1    Bird, G.L.2    Kuijpers, M.3    Zimmerman, R.A.4    Jarvik, G.P.5    Wernovsky, G.6
  • 34
    • 17744396088 scopus 로고    scopus 로고
    • Hypocarbia in preterm infants with Periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation
    • Okumura A., Hayakawa F., Kato T., Itomi K., Maruyama K., Ishihara N., et al. Hypocarbia in preterm infants with Periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation. Pediatrics 107 (2001) 469-475
    • (2001) Pediatrics , vol.107 , pp. 469-475
    • Okumura, A.1    Hayakawa, F.2    Kato, T.3    Itomi, K.4    Maruyama, K.5    Ishihara, N.6
  • 35
    • 33750115974 scopus 로고    scopus 로고
    • Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants
    • Shankaran S., Langer J.C., Kazzi S.N., Laptook A.R., and Walsh M. Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics 118 (2006) 1654-1659
    • (2006) Pediatrics , vol.118 , pp. 1654-1659
    • Shankaran, S.1    Langer, J.C.2    Kazzi, S.N.3    Laptook, A.R.4    Walsh, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.