메뉴 건너뛰기




Volumn 24, Issue 6, 2008, Pages 816-823

Prognostics of machine condition using soft computing

Author keywords

Computational intelligence; Machine fault prognostics; Machine learning; Neuro fuzzy systems; Soft computing; Support vector regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONDITION MONITORING; ELECTRIC FAULT CURRENTS; FOOD PROCESSING; FORECASTING; FUZZY INFERENCE; LEARNING SYSTEMS; SOFT COMPUTING;

EID: 50349088597     PISSN: 07365845     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rcim.2008.03.011     Document Type: Article
Times cited : (49)

References (25)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine A.K.S., Lin D., and Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20 (2006) 1483-1510
    • (2006) Mech Syst Signal Process , vol.20 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 2
    • 1942453835 scopus 로고    scopus 로고
    • Mechanical and propulsion systems prognostics: US navy strategy and demonstration
    • Hardman W. Mechanical and propulsion systems prognostics: US navy strategy and demonstration. JOM 56 3 (2004) 21-27
    • (2004) JOM , vol.56 , Issue.3 , pp. 21-27
    • Hardman, W.1
  • 3
    • 0032598574 scopus 로고    scopus 로고
    • Hardman W, Hess A, Sheaffer J. SH-60 helicopter integrated diagnostic system (HIDS) program-diagnostic and prognostic development experience. In: Proceedings of the IEEE aerospace conference, Aspen, CO, USA, March 6-13, 1999. p. 473.
    • Hardman W, Hess A, Sheaffer J. SH-60 helicopter integrated diagnostic system (HIDS) program-diagnostic and prognostic development experience. In: Proceedings of the IEEE aerospace conference, Aspen, CO, USA, March 6-13, 1999. p. 473.
  • 4
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mech Syst Signal Process 18 (2004) 625-644
    • (2004) Mech Syst Signal Process , vol.18 , pp. 625-644
    • Samanta, B.1
  • 5
    • 0032643704 scopus 로고    scopus 로고
    • Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
    • Tse P., and Atherton D. Prediction of machine deterioration using vibration based fault trends and recurrent neural networks. J Vib Acoust 121 (1999) 355-362
    • (1999) J Vib Acoust , vol.121 , pp. 355-362
    • Tse, P.1    Atherton, D.2
  • 6
    • 50349085131 scopus 로고    scopus 로고
    • Zakrajsek J, Townshed D, Lewicki D, Decker H, Handschuh R. Transmission diagnostic research at NASA Langley Research Center. IMechE conference transactions, 2nd international conference on gearbox noise, vibration and diagnostics, London, UK, 1995. p. 1.
    • Zakrajsek J, Townshed D, Lewicki D, Decker H, Handschuh R. Transmission diagnostic research at NASA Langley Research Center. IMechE conference transactions, 2nd international conference on gearbox noise, vibration and diagnostics, London, UK, 1995. p. 1.
  • 7
    • 2442503629 scopus 로고    scopus 로고
    • Prognosis of machine health condition using neuro-fuzzy systems
    • Wang W.Q., Golnaraghi M.F., and Ismail F. Prognosis of machine health condition using neuro-fuzzy systems. Mech Syst Signal Process 18 (2004) 813-831
    • (2004) Mech Syst Signal Process , vol.18 , pp. 813-831
    • Wang, W.Q.1    Golnaraghi, M.F.2    Ismail, F.3
  • 8
    • 7244232556 scopus 로고    scopus 로고
    • A neuro-fuzzy approach to gear system monitoring
    • Wang W., Ismail F., and Golnaraghi F. A neuro-fuzzy approach to gear system monitoring. IEEE Trans Fuzzy Syst 12 (2004) 710-723
    • (2004) IEEE Trans Fuzzy Syst , vol.12 , pp. 710-723
    • Wang, W.1    Ismail, F.2    Golnaraghi, F.3
  • 9
    • 33750515020 scopus 로고    scopus 로고
    • An adaptive predictor for dynamic system forecasting
    • Wang W. An adaptive predictor for dynamic system forecasting. Mech Syst Signal Process 21 (2007) 809-823
    • (2007) Mech Syst Signal Process , vol.21 , pp. 809-823
    • Wang, W.1
  • 11
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer J.G., and Hyndman R.J. 25 years of time series forecasting. Int J Forecast 22 (2006) 443-473
    • (2006) Int J Forecast , vol.22 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 12
    • 0036554877 scopus 로고    scopus 로고
    • A dynamical systems approach to damage evolution tracking, part 1: description and experimental application
    • Chelidze D., Cusumano J.P., and Chattterjee A. A dynamical systems approach to damage evolution tracking, part 1: description and experimental application. Trans ASME, J Vib Acoust 124 (2002) 250-257
    • (2002) Trans ASME, J Vib Acoust , vol.124 , pp. 250-257
    • Chelidze, D.1    Cusumano, J.P.2    Chattterjee, A.3
  • 13
    • 0036554994 scopus 로고    scopus 로고
    • A dynamical systems approach to damage evolution tracking, part 2: model-based validation and interpretation
    • Cusumano J.P., Chelidze D., and Chattterjee A. A dynamical systems approach to damage evolution tracking, part 2: model-based validation and interpretation. Trans ASME, J Vib Acoust 124 (2002) 258-264
    • (2002) Trans ASME, J Vib Acoust , vol.124 , pp. 258-264
    • Cusumano, J.P.1    Chelidze, D.2    Chattterjee, A.3
  • 14
    • 50349083352 scopus 로고    scopus 로고
    • Schwabacher MA. A survey of data-driven prognostics. Infotech@Aerospace, Arlington, VA, Paper {music sharp sign} AIAA 2005-7002, 2005. p. 1.
    • Schwabacher MA. A survey of data-driven prognostics. Infotech@Aerospace, Arlington, VA, Paper {music sharp sign} AIAA 2005-7002, 2005. p. 1.
  • 15
    • 1942453855 scopus 로고    scopus 로고
    • Predicting remaining life by fusing the physics of failure modeling with diagnostics
    • Kacpryznski G.J., Sarlashkar A., Roemer M.J., Hess A., and Hardman W. Predicting remaining life by fusing the physics of failure modeling with diagnostics. JOM 56 3 (2004) 29-35
    • (2004) JOM , vol.56 , Issue.3 , pp. 29-35
    • Kacpryznski, G.J.1    Sarlashkar, A.2    Roemer, M.J.3    Hess, A.4    Hardman, W.5
  • 16
    • 17644398210 scopus 로고    scopus 로고
    • Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics
    • Li C., and Lee H. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mech Syst Signal Process 9 (2005) 836-846
    • (2005) Mech Syst Signal Process , vol.9 , pp. 836-846
    • Li, C.1    Lee, H.2
  • 17
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst, Man Cybernet 23 (1993) 665-685
    • (1993) IEEE Trans Syst, Man Cybernet , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 19
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. IEEE Trans Neural Networks 10 (1999) 988-1000
    • (1999) IEEE Trans Neural Networks , vol.10 , pp. 988-1000
    • Vapnik, V.N.1
  • 20
    • 50349094610 scopus 로고    scopus 로고
    • Gunn SR. Support vector machines for classification and regression, Technical report, Department of Electrical and Computer Science, University of Southampton, 1998.
    • Gunn SR. Support vector machines for classification and regression, Technical report, Department of Electrical and Computer Science, University of Southampton, 1998.
  • 21
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., and Schölkopf B. A tutorial on support vector regression. Statist Comput 14 (2004) 199-222
    • (2004) Statist Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 23
    • 50349093525 scopus 로고    scopus 로고
    • Samanta B, Nataraj C. Machinery prognostics using soft computing. In: Proceedings of the 17th international conference on flexible automation and intelligent manufacturing (FAIM2007), Penn State Great Valley, Philadelphia, June 18-20, 2007. p. 965.
    • Samanta B, Nataraj C. Machinery prognostics using soft computing. In: Proceedings of the 17th international conference on flexible automation and intelligent manufacturing (FAIM2007), Penn State Great Valley, Philadelphia, June 18-20, 2007. p. 965.
  • 24
    • 50349099077 scopus 로고    scopus 로고
    • RWC Belgium World Data Center, Online sunspot data archive, SIDC 〈http://sidc.oma.be/index.php3〉.
    • RWC Belgium World Data Center, Online sunspot data archive, SIDC 〈http://sidc.oma.be/index.php3〉.
  • 25
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans Automat Control 17 (1974) 716-723
    • (1974) IEEE Trans Automat Control , vol.17 , pp. 716-723
    • Akaike, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.