메뉴 건너뛰기




Volumn 20, Issue 5, 2009, Pages 882-890

Block-quantized support vector ordinal regression

Author keywords

Block quantization; Clustering; Ordinal regression (OR); Support vector machine (SVM)

Indexed keywords

APPROXIMATION ACCURACY; BLOCK QUANTIZATION; CLUSTERING; DATA SAMPLE; DATA SET SIZE; KERNEL MATRICES; NUMBER OF CLUSTERS; OPTIMIZATION PROBLEMS; ORDINAL REGRESSION; ORDINAL REGRESSION (OR); REAL WORLD DATA; SUPPORT VECTOR; SUPPORT VECTOR MACHINE (SVM); TRAINING SETS;

EID: 67349191704     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2009.2017533     Document Type: Article
Times cited : (21)

References (29)
  • 1
    • 69849105453 scopus 로고    scopus 로고
    • A simple approach to ordinal classification
    • E. Frank and M. Hall, "A simple approach to ordinal classification," in Proc. 12th Eur. Conf. Mach. Learn., 2001, vol. 12, pp. 145-165.
    • (2001) Proc. 12th Eur. Conf. Mach. Learn , vol.12 , pp. 145-165
    • Frank, E.1    Hall, M.2
  • 2
    • 37749025853 scopus 로고    scopus 로고
    • Ranking the best instances
    • S. Clemencon and N. Vayatis, "Ranking the best instances," J. Mach. Learn. Res., vol. 8, pp. 2671-2699, 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 2671-2699
    • Clemencon, S.1    Vayatis, N.2
  • 6
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • W. Chu and S. S. Keerthi, "Support vector ordinal regression," Neural Comput., vol. 19, pp. 792-815, 2007.
    • (2007) Neural Comput , vol.19 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 7
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • W. Chu and Z. Ghahramani, "Gaussian processes for ordinal regression," J. Mach. Learn. Res., vol. 6, pp. 1019-1041, 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 9
    • 33750681345 scopus 로고    scopus 로고
    • Large-margin thresholded ensembles for ordinal regression: Theory and practice
    • H. Lin and L. Li, "Large-margin thresholded ensembles for ordinal regression: Theory and practice," in Proc. 17th Int. Conf. Algorithmic Learn. Theory, 2006, pp. 319-333.
    • (2006) Proc. 17th Int. Conf. Algorithmic Learn. Theory , pp. 319-333
    • Lin, H.1    Li, L.2
  • 11
    • 85156251048 scopus 로고    scopus 로고
    • Constraint classification: A new approach to multiclass classification and ranking
    • S. Har-Peled, D. Roth, and D. Zimak, "Constraint classification: A new approach to multiclass classification and ranking," Neural Inf. Process. Syst., vol. 15, pp. 785-792, 2002.
    • (2002) Neural Inf. Process. Syst , vol.15 , pp. 785-792
    • Har-Peled, S.1    Roth, D.2    Zimak, D.3
  • 12
    • 0008371352 scopus 로고    scopus 로고
    • Lrage margin rank boundaries for ordinal regression
    • Cambridge, MA: MIT Press
    • R. Herbrich, T. Graepel, and K. Obermayer, "Lrage margin rank boundaries for ordinal regression," in Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 2000, pp. 115-132.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 14
    • 0001306637 scopus 로고
    • Regression models for ordinal data
    • P. McCullagh, "Regression models for ordinal data," J. Roy. Statist. Soc. B, vol. 42, no. 2, pp. 109-142, 1980.
    • (1980) J. Roy. Statist. Soc. B , vol.42 , Issue.2 , pp. 109-142
    • McCullagh, P.1
  • 15
    • 67349127743 scopus 로고    scopus 로고
    • V. E. Johnson and J. H. Albert, Ordinal Data Modeling (Statistics for Social Science and Public Policy). New York: Springer-Verlag, 1999.
    • V. E. Johnson and J. H. Albert, Ordinal Data Modeling (Statistics for Social Science and Public Policy). New York: Springer-Verlag, 1999.
  • 16
    • 85156208493 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • A. Shashua and A. Levin, "Ranking with large margin principle: Two approaches," Neural Inf. Process. Syst., vol. 15, pp. 937-944, 2002.
    • (2002) Neural Inf. Process. Syst , vol.15 , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 18
    • 2942555397 scopus 로고    scopus 로고
    • Training support vector machine using adaptive clustering
    • D. Boley and D. Cao, "Training support vector machine using adaptive clustering," in Proc. 4th SIAM Int. Conf. Data Mining, 2004, pp. 126-137.
    • (2004) Proc. 4th SIAM Int. Conf. Data Mining , pp. 126-137
    • Boley, D.1    Cao, D.2
  • 19
    • 33744503185 scopus 로고    scopus 로고
    • Support vector machines based on k means clustering for real-time business intelligence systems
    • J. Wang, X. Wu, and C. Zhang, "Support vector machines based on k means clustering for real-time business intelligence systems," Int. J. Business Intell. Data Mining, vol. 1, no. 1, pp. 54-64, 2005.
    • (2005) Int. J. Business Intell. Data Mining , vol.1 , Issue.1 , pp. 54-64
    • Wang, J.1    Wu, X.2    Zhang, C.3
  • 20
    • 34547174623 scopus 로고    scopus 로고
    • Learning concepts from large scale imbalanced data sets using support cluster machines
    • J. Yuan, J. Li, and B. Zhang, "Learning concepts from large scale imbalanced data sets using support cluster machines," in Proc. 14th Annu. ACM Int. Conf. Multimedia, 2006, pp. 441-450.
    • (2006) Proc. 14th Annu. ACM Int. Conf. Multimedia , pp. 441-450
    • Yuan, J.1    Li, J.2    Zhang, B.3
  • 21
    • 84950251817 scopus 로고    scopus 로고
    • SVM-KM: Speeding SVMs learning with a priori cluster selection and k-means
    • M. Almeida, A. Braga, and J. Braga, "SVM-KM: Speeding SVMs learning with a priori cluster selection and k-means," in Proc. 6th Brazilian Symp. Neural Netw., 2000, pp. 162-167.
    • (2000) Proc. 6th Brazilian Symp. Neural Netw , pp. 162-167
    • Almeida, M.1    Braga, A.2    Braga, J.3
  • 22
    • 27944509126 scopus 로고    scopus 로고
    • Making svms scalable to large data sets using hierarchical cluster indexing
    • H. Yu, J. Yang, J. Han, and X. Li, "Making svms scalable to large data sets using hierarchical cluster indexing," Data Mining Knowl. Disc. vol. 11, no. 3, pp. 295-321, 2005.
    • (2005) Data Mining Knowl. Disc , vol.11 , Issue.3 , pp. 295-321
    • Yu, H.1    Yang, J.2    Han, J.3    Li, X.4
  • 23
    • 35248825961 scopus 로고    scopus 로고
    • Representative sampling for text classification using support vector machines
    • Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, "Representative sampling for text classification using support vector machines," in Proc. 25th Eur. Conf. Inf. Retrieval Res., 2003, pp. 393-407.
    • (2003) Proc. 25th Eur. Conf. Inf. Retrieval Res , pp. 393-407
    • Xu, Z.1    Yu, K.2    Tresp, V.3    Xu, X.4    Wang, J.5
  • 24
    • 33749248512 scopus 로고    scopus 로고
    • Block-quantized kernel matrix for fast spectral embedding
    • K. Zhang and J. T. Kwok, "Block-quantized kernel matrix for fast spectral embedding," in Proc. 23rd Int. Conf. Mach. Learn., 2006, vol. 23, pp. 1097-1104.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn , vol.23 , pp. 1097-1104
    • Zhang, K.1    Kwok, J.T.2
  • 27
    • 34548748711 scopus 로고    scopus 로고
    • Weighted graph cuts without eigenvectors: A multilevel approach
    • Nov
    • I. S. Dhillon, Y. Guan, and B. Kulis, "Weighted graph cuts without eigenvectors: A multilevel approach," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 11, pp. 1944-1957, Nov. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell , vol.29 , Issue.11 , pp. 1944-1957
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 28


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.