메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 1097-1104

Block-quantized kernel matrix for fast spectral embedding

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; DATA STRUCTURES; EIGENVALUES AND EIGENFUNCTIONS; IMAGE SEGMENTATION; PRINCIPAL COMPONENT ANALYSIS; PROBLEM SOLVING;

EID: 33749248512     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (17)
  • 4
    • 0004151496 scopus 로고    scopus 로고
    • New York: Springer-Verlag
    • Bhatia, R. (1997). Matrix analysis. New York: Springer-Verlag.
    • (1997) Matrix Analysis
    • Bhatia, R.1
  • 6
    • 29244453931 scopus 로고    scopus 로고
    • On the nyström method for approximating a Gram matrix for improved kernel-based learning
    • Drineas, P., & Mahoney, M. W. (2005). On the nyström method for approximating a Gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6, 2153-2175.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 8
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine, S., & Scheinberg, K. (2001). Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2, 243-264.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 11
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution kd-trees
    • San Mateo, CA: Morgan Kaufmann
    • Moore, A. (1998). Very fast EM-based mixture model clustering using multiresolution kd-trees. Advances in Neural Information Processing Systems (pp. 543-549). San Mateo, CA: Morgan Kaufmann.
    • (1998) Advances in Neural Information Processing Systems , pp. 543-549
    • Moore, A.1
  • 13
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.