메뉴 건너뛰기




Volumn 36, Issue 9, 2009, Pages 11451-11460

GA-based learning bias selection mechanism for real-time scheduling systems

Author keywords

Artificial neural network; Decision tree; Feature selection; Genetic algorithm; Machine learning; Real time scheduling; Support vector machine

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BACK-PROPAGATION NEURAL NETWORKS; FEATURE SELECTION; FEATURE SUBSET; GENERALIZATION ABILITY; KNOWLEDGE BASIS; LEARNING PARAMETERS; MACHINE LEARNING; MACHINE LEARNING ALGORITHMS; MACHINE LEARNING TECHNOLOGY; OPTIMAL SUBSETS; PERFORMANCE CRITERION; PROPER LEARNING; REAL-TIME SCHEDULING; SELECTION MECHANISM; SYSTEM FEATURES;

EID: 67349136034     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.03.019     Document Type: Article
Times cited : (17)

References (39)
  • 1
    • 0032661588 scopus 로고    scopus 로고
    • Neural network-based adaptive production control system for flexible manufacturing cell under a random environment
    • Arzi Y., and Iaroslavitz L. Neural network-based adaptive production control system for flexible manufacturing cell under a random environment. IIE Transactions 31 3 (1999) 217-230
    • (1999) IIE Transactions , vol.31 , Issue.3 , pp. 217-230
    • Arzi, Y.1    Iaroslavitz, L.2
  • 2
    • 0034651059 scopus 로고    scopus 로고
    • Operating an FMC by a decision-tree-based adaptive production control system
    • Arzi Y., and Iaroslavitz L. Operating an FMC by a decision-tree-based adaptive production control system. International Journal of Production Research 38 3 (2000) 675-697
    • (2000) International Journal of Production Research , vol.38 , Issue.3 , pp. 675-697
    • Arzi, Y.1    Iaroslavitz, L.2
  • 3
    • 0021496929 scopus 로고
    • Sequencing rules and due-date assignments in a job shop
    • Baker K.R. Sequencing rules and due-date assignments in a job shop. Management Science 30 9 (1984) 1093-1104
    • (1984) Management Science , vol.30 , Issue.9 , pp. 1093-1104
    • Baker, K.R.1
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining 2 2 (1998) 121-167
    • (1998) Knowledge Discovery and Data Mining , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0027576654 scopus 로고
    • A robust adaptive scheduler for an intelligent workstation controller
    • Cho H., and Wysk R.A. A robust adaptive scheduler for an intelligent workstation controller. International Journal of Production Research 31 4 (1993) 771-789
    • (1993) International Journal of Production Research , vol.31 , Issue.4 , pp. 771-789
    • Cho, H.1    Wysk, R.A.2
  • 8
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • First international workshop on multiple classifier systems, Springer, New York
    • Dietterich T.G. Ensemble methods in machine learning. First international workshop on multiple classifier systems. Lecture notes in computer science (2000), Springer, New York 1-15
    • (2000) Lecture notes in computer science , pp. 1-15
    • Dietterich, T.G.1
  • 11
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Haung C.L., and Wang C.J. A GA-based feature selection and parameters optimization for support vector machines. Expert System with Applications 31 2 (2006) 231-240
    • (2006) Expert System with Applications , vol.31 , Issue.2 , pp. 231-240
    • Haung, C.L.1    Wang, C.J.2
  • 13
    • 1542376003 scopus 로고    scopus 로고
    • Data mining approach to production control in the computer integrated testing cell
    • Kwak C., and Yih Y. Data mining approach to production control in the computer integrated testing cell. IEEE Transactions on Robotics and Automation 20 1 (2004) 107-116
    • (2004) IEEE Transactions on Robotics and Automation , vol.20 , Issue.1 , pp. 107-116
    • Kwak, C.1    Yih, Y.2
  • 14
    • 0142061487 scopus 로고    scopus 로고
    • E-manufacturing-fundamental, tools, and transformation
    • Lee J. E-manufacturing-fundamental, tools, and transformation. Robotics and Computer-Integrated Manufacturing 19 6 (2003) 501-507
    • (2003) Robotics and Computer-Integrated Manufacturing , vol.19 , Issue.6 , pp. 501-507
    • Lee, J.1
  • 15
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim T.S., Loh W.Y., and Shih Y.S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning 40 3 (2000) 203-228
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.S.1    Loh, W.Y.2    Shih, Y.S.3
  • 16
    • 3843050541 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
    • Technical report, University of National Taiwan, Department of Computer Science and Information Engineering, March, 1-32
    • Lin, H. T., & Lin, C. J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, University of National Taiwan, Department of Computer Science and Information Engineering, March, 1-32.
    • (2003)
    • Lin, H.T.1    Lin, C.J.2
  • 19
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • Min S.H., Lee J., and Han I. Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert System with Applications 31 3 (2006) 652-660
    • (2006) Expert System with Applications , vol.31 , Issue.3 , pp. 652-660
    • Min, S.H.1    Lee, J.2    Han, I.3
  • 20
    • 0003682772 scopus 로고
    • The need for biases in learning generalizations
    • Technical Report CBM-TR-117. Department of Computer Science, Rutgers University
    • Mitchell, T. (1980). The need for biases in learning generalizations. Technical Report CBM-TR-117. Department of Computer Science, Rutgers University.
    • (1980)
    • Mitchell, T.1
  • 23
    • 0031198746 scopus 로고    scopus 로고
    • Adaptive scheduling in dynamic flexible manufacturing systems: A dynamic rule selection approach
    • Park S.C., Raman N., and Shaw M.J. Adaptive scheduling in dynamic flexible manufacturing systems: A dynamic rule selection approach. IEEE Transactions on Robotics and Automation 13 4 (1997) 486-502
    • (1997) IEEE Transactions on Robotics and Automation , vol.13 , Issue.4 , pp. 486-502
    • Park, S.C.1    Raman, N.2    Shaw, M.J.3
  • 25
    • 0242333152 scopus 로고    scopus 로고
    • Extended structured adaptive supervisory control model of shop floor controls for an e-manufacturing system
    • Qiu R., Wysk R., and Xu Q. Extended structured adaptive supervisory control model of shop floor controls for an e-manufacturing system. International Journal of Production Research 41 8 (2003) 1605-1620
    • (2003) International Journal of Production Research , vol.41 , Issue.8 , pp. 1605-1620
    • Qiu, R.1    Wysk, R.2    Xu, Q.3
  • 26
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 31
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg S.L. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 3 (1997) 317-327
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 317-327
    • Salzberg, S.L.1
  • 32
    • 32544433960 scopus 로고    scopus 로고
    • Learning-based multi-pass adaptive scheduling for a dynamic manufacturing cell environment
    • Shiue Y.R., and Guh R.S. Learning-based multi-pass adaptive scheduling for a dynamic manufacturing cell environment. Robotics and Computer Integrated Manufacturing 22 3 (2006) 203-216
    • (2006) Robotics and Computer Integrated Manufacturing , vol.22 , Issue.3 , pp. 203-216
    • Shiue, Y.R.1    Guh, R.S.2
  • 34
    • 42949132332 scopus 로고    scopus 로고
    • Controlling flexible manufacturing systems based on a dynamic selection of the appropriate operational criteria and scheduling policy
    • Shnits B., and Sinreich D. Controlling flexible manufacturing systems based on a dynamic selection of the appropriate operational criteria and scheduling policy. International Journal of Flexible Manufacturing Systems 18 1 (2006) 1-27
    • (2006) International Journal of Flexible Manufacturing Systems , vol.18 , Issue.1 , pp. 1-27
    • Shnits, B.1    Sinreich, D.2
  • 36
    • 0242269909 scopus 로고    scopus 로고
    • Intelligent scheduling controller for shop floor control systems: A hybrid genetic algorithm/decision tree learning approach
    • Su C.T., and Shiue Y.R. Intelligent scheduling controller for shop floor control systems: A hybrid genetic algorithm/decision tree learning approach. International Journal of Production Research 41 12 (2003) 2619-2641
    • (2003) International Journal of Production Research , vol.41 , Issue.12 , pp. 2619-2641
    • Su, C.T.1    Shiue, Y.R.2
  • 37
    • 67349083044 scopus 로고    scopus 로고
    • Tecnomatix Plant Simulation (2006). Tecnomatix Plant Simulation 7.6 User Guide. Plano TX: Tecnomatix Technologies Ltd.
    • Tecnomatix Plant Simulation (2006). Tecnomatix Plant Simulation 7.6 User Guide. Plano TX: Tecnomatix Technologies Ltd.
  • 39
    • 0024731596 scopus 로고
    • An application of discrete-event simulation to on-line control and scheduling in flexible manufacturing
    • Wu S.D., and Wysk R.A. An application of discrete-event simulation to on-line control and scheduling in flexible manufacturing. International Journal of Production Research 27 9 (1989) 1603-1623
    • (1989) International Journal of Production Research , vol.27 , Issue.9 , pp. 1603-1623
    • Wu, S.D.1    Wysk, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.