메뉴 건너뛰기




Volumn 50, Issue 6, 2009, Pages 867-879

Measures of ruleset quality for general rules extraction methods

Author keywords

Fuzzy logic; Observational logic; Quality measures; ROC curves; Rules extraction from data; Ruleset measures

Indexed keywords

OBSERVATIONAL LOGIC; QUALITY MEASURES; ROC CURVES; RULES EXTRACTION FROM DATA; RULESET MEASURES;

EID: 67349130842     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2009.03.002     Document Type: Article
Times cited : (11)

References (49)
  • 2
    • 14844361816 scopus 로고    scopus 로고
    • ROC 'n' rule learning - towards a better understanding of covering algorithms
    • Fürnkranz J., and Flach P. ROC 'n' rule learning - towards a better understanding of covering algorithms. Machine Learning 58 (2005) 39-77
    • (2005) Machine Learning , vol.58 , pp. 39-77
    • Fürnkranz, J.1    Flach, P.2
  • 3
    • 0034156963 scopus 로고    scopus 로고
    • An adjustable description quality measure for pattern discovery using the AQ methodology
    • Kaufman K., and Michalski R. An adjustable description quality measure for pattern discovery using the AQ methodology. Journal of Intelligent Information Systems 14 (2000) 199-216
    • (2000) Journal of Intelligent Information Systems , vol.14 , pp. 199-216
    • Kaufman, K.1    Michalski, R.2
  • 5
    • 28544452631 scopus 로고    scopus 로고
    • A survey of interestingness measures for knowledge discovery
    • McGarry K. A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review 20 (2005) 39-61
    • (2005) Knowledge Engineering Review , vol.20 , pp. 39-61
    • McGarry, K.1
  • 6
    • 33748458842 scopus 로고    scopus 로고
    • A systematic approach to the assessment of fuzzy association rules
    • Dubois D., Hüllermeier, and Prade H. A systematic approach to the assessment of fuzzy association rules. Data Mining and Knowledge Discovery 13 (2006) 167-192
    • (2006) Data Mining and Knowledge Discovery , vol.13 , pp. 167-192
    • Dubois, D.1    Hüllermeier2    Prade, H.3
  • 7
    • 34249824562 scopus 로고    scopus 로고
    • Mining pareto-optimal rules with respect to support and confirmation or support and anti-support
    • Brzezinska I., Greco S., and Slowinski R. Mining pareto-optimal rules with respect to support and confirmation or support and anti-support. Engineering Applications of Artificial Intelligence 20 (2007) 587-600
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , pp. 587-600
    • Brzezinska, I.1    Greco, S.2    Slowinski, R.3
  • 8
    • 33846463460 scopus 로고    scopus 로고
    • Choosing the right lens: finding what is interesting in data mining
    • Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
    • Geng L., and Hamilton H. Choosing the right lens: finding what is interesting in data mining. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 3-24
    • (2007) Quality Measures in Data Mining , pp. 3-24
    • Geng, L.1    Hamilton, H.2
  • 9
    • 33846419833 scopus 로고    scopus 로고
    • Association rule interestingness: measure and statistical validation
    • Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
    • Lallich S., Teytaud O., and Prudhomme E. Association rule interestingness: measure and statistical validation. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 251-275
    • (2007) Quality Measures in Data Mining , pp. 251-275
    • Lallich, S.1    Teytaud, O.2    Prudhomme, E.3
  • 10
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences. mining contrast sets
    • Bay S., and Pazzani M. Detecting group differences. mining contrast sets. Data Mining and Knowledge Discovery 5 (2001) 213-246
    • (2001) Data Mining and Knowledge Discovery , vol.5 , pp. 213-246
    • Bay, S.1    Pazzani, M.2
  • 11
    • 33846422016 scopus 로고    scopus 로고
    • Statistical methodologies for mining potentially interesting contrast sets
    • Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
    • Hilderman R., and Peckham T. Statistical methodologies for mining potentially interesting contrast sets. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 153-177
    • (2007) Quality Measures in Data Mining , pp. 153-177
    • Hilderman, R.1    Peckham, T.2
  • 12
    • 77950484598 scopus 로고    scopus 로고
    • Une mesure probabiliste contextuelle discriminante de qualite des règles d'association
    • Hermes Science Publications, Lavoisier
    • Lerman L., and Azè J. Une mesure probabiliste contextuelle discriminante de qualite des règles d'association. EGC 2003: Extraction et Gestion des Connaissances (2003), Hermes Science Publications, Lavoisier 247-263
    • (2003) EGC 2003: Extraction et Gestion des Connaissances , pp. 247-263
    • Lerman, L.1    Azè, J.2
  • 13
    • 33846447487 scopus 로고    scopus 로고
    • Association rule interestingness meaures: experimental and theoretical studies
    • Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
    • Lenca P., Vaiilant B., Meyer P., and Lalich S. Association rule interestingness meaures: experimental and theoretical studies. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 51-76
    • (2007) Quality Measures in Data Mining , pp. 51-76
    • Lenca, P.1    Vaiilant, B.2    Meyer, P.3    Lalich, S.4
  • 18
    • 36248940832 scopus 로고    scopus 로고
    • Machine learning based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research
    • Peterson L., and Coleman M. Machine learning based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research. International Journal of Approximate Reasoning 47 (2008) 17-36
    • (2008) International Journal of Approximate Reasoning , vol.47 , pp. 17-36
    • Peterson, L.1    Coleman, M.2
  • 23
    • 0019063015 scopus 로고
    • Knowledge acquisition through conceptual clustering: a theoretical framework and algorithm for partitioning data into conjunctive concepts
    • Michalski R. Knowledge acquisition through conceptual clustering: a theoretical framework and algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Information Systems 4 (1980) 219-243
    • (1980) International Journal of Policy Analysis and Information Systems , vol.4 , pp. 219-243
    • Michalski, R.1
  • 25
    • 85015191605 scopus 로고
    • Rule induction with CN2: some recent improvements
    • Springer Verlag, New York
    • Clark P., and Boswell R. Rule induction with CN2: some recent improvements. Machine Learning - EWSL-91 (1991), Springer Verlag, New York 151-163
    • (1991) Machine Learning - EWSL-91 , pp. 151-163
    • Clark, P.1    Boswell, R.2
  • 26
    • 0004174560 scopus 로고
    • Kluwer Academic Publishers, Dordrecht
    • Pawlak Z. Rough Sets (1991), Kluwer Academic Publishers, Dordrecht
    • (1991) Rough Sets
    • Pawlak, Z.1
  • 27
    • 36248994777 scopus 로고    scopus 로고
    • A rough set approach for the discovery of classification rules in interval-valued information systems
    • Leung Y., Fischer M., Wu W., and Mi J. A rough set approach for the discovery of classification rules in interval-valued information systems. International Journal of Approximate Reasoning 47 (2008) 233-246
    • (2008) International Journal of Approximate Reasoning , vol.47 , pp. 233-246
    • Leung, Y.1    Fischer, M.2    Wu, W.3    Mi, J.4
  • 32
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J., and Sun C. Neuro-fuzzy modeling and control. The Proceedings of the IEEE 83 (1995) 378-406
    • (1995) The Proceedings of the IEEE , vol.83 , pp. 378-406
    • Jang, J.1    Sun, C.2
  • 33
    • 0032114652 scopus 로고    scopus 로고
    • NEFCLASS-X: a neuro-fuzzy tool to build readable fuzzy classifiers
    • Nauck D., and Kruse R. NEFCLASS-X: a neuro-fuzzy tool to build readable fuzzy classifiers. BT Technology Journal 3 (1998) 180-192
    • (1998) BT Technology Journal , vol.3 , pp. 180-192
    • Nauck, D.1    Kruse, R.2
  • 35
    • 0001181941 scopus 로고    scopus 로고
    • Fuzzy hypotheses for GUHA implications
    • Holeňa M. Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems 98 (1998) 101-125
    • (1998) Fuzzy Sets and Systems , vol.98 , pp. 101-125
    • Holeňa, M.1
  • 36
    • 2942560785 scopus 로고    scopus 로고
    • Fuzzy hypotheses testing in the framework of fuzzy logic
    • Holeňa M. Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004) 229-252
    • (2004) Fuzzy Sets and Systems , vol.145 , pp. 229-252
    • Holeňa, M.1
  • 40
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • Duch W., Adamczak R., and Grabczewski K. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 11 (2000) 277-306
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 41
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Tsukimoto H. Extracting rules from trained neural networks. IEEE Transactions on Neural Networks 11 (2000) 333-389
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 333-389
    • Tsukimoto, H.1
  • 42
    • 33750596411 scopus 로고    scopus 로고
    • Piecewise-linear neural networks and their relationship to rule extraction from data
    • Holeňa M. Piecewise-linear neural networks and their relationship to rule extraction from data. Neural Computation 18 (2006) 2813-2853
    • (2006) Neural Computation , vol.18 , pp. 2813-2853
    • Holeňa, M.1
  • 43
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: directions and challenges in extracting rules from trained artificial neural networks
    • Tickle A., Andrews R., Golea M., and Diederich J. The truth will come to light: directions and challenges in extracting rules from trained artificial neural networks. IEEE Transactions on Neural Networks 9 (1998) 1057-1068
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 1057-1068
    • Tickle, A.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 44
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S., and Hayashi Y. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 11 (2000) 748-768
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 45
    • 9144229595 scopus 로고    scopus 로고
    • Academic KDD project LISP-Miner
    • Abraham A., Franke K., and Koppen K. (Eds), Springer Verlag, Heidelberg
    • Šim̊unek M. Academic KDD project LISP-Miner. In: Abraham A., Franke K., and Koppen K. (Eds). Advances in Soft Computing - Systems Design and Applications (2003), Springer Verlag, Heidelberg 263-272
    • (2003) Advances in Soft Computing - Systems Design and Applications , pp. 263-272
    • Šim̊unek, M.1
  • 46
    • 0037467664 scopus 로고    scopus 로고
    • Formal logics of discovery and hypothesis formation by machine
    • Hájek P., and Holeňa M. Formal logics of discovery and hypothesis formation by machine. Theoretical Computer Science 292 (2003) 345-357
    • (2003) Theoretical Computer Science , vol.292 , pp. 345-357
    • Hájek, P.1    Holeňa, M.2
  • 47
    • 25444464640 scopus 로고    scopus 로고
    • Extraction of fuzzy logic rules from data by means of artificial neural networks
    • Holeňa M. Extraction of fuzzy logic rules from data by means of artificial neural networks. Kybernetika 41 (2005) 297-314
    • (2005) Kybernetika , vol.41 , pp. 297-314
    • Holeňa, M.1
  • 48
    • 38049153871 scopus 로고    scopus 로고
    • Neural networks for extraction of fuzzy logic rules with application to EEG data
    • Ribeiro B., Albrecht R., and Dobnikar A. (Eds), Springer Verlag, Wein
    • Holeňa M. Neural networks for extraction of fuzzy logic rules with application to EEG data. In: Ribeiro B., Albrecht R., and Dobnikar A. (Eds). Adaptive and Natural Computing Algorithms (2005), Springer Verlag, Wein 369-372
    • (2005) Adaptive and Natural Computing Algorithms , pp. 369-372
    • Holeňa, M.1
  • 49
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 (1936) 179-188
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.