-
2
-
-
14844361816
-
ROC 'n' rule learning - towards a better understanding of covering algorithms
-
Fürnkranz J., and Flach P. ROC 'n' rule learning - towards a better understanding of covering algorithms. Machine Learning 58 (2005) 39-77
-
(2005)
Machine Learning
, vol.58
, pp. 39-77
-
-
Fürnkranz, J.1
Flach, P.2
-
3
-
-
0034156963
-
An adjustable description quality measure for pattern discovery using the AQ methodology
-
Kaufman K., and Michalski R. An adjustable description quality measure for pattern discovery using the AQ methodology. Journal of Intelligent Information Systems 14 (2000) 199-216
-
(2000)
Journal of Intelligent Information Systems
, vol.14
, pp. 199-216
-
-
Kaufman, K.1
Michalski, R.2
-
5
-
-
28544452631
-
A survey of interestingness measures for knowledge discovery
-
McGarry K. A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review 20 (2005) 39-61
-
(2005)
Knowledge Engineering Review
, vol.20
, pp. 39-61
-
-
McGarry, K.1
-
8
-
-
33846463460
-
Choosing the right lens: finding what is interesting in data mining
-
Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
-
Geng L., and Hamilton H. Choosing the right lens: finding what is interesting in data mining. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 3-24
-
(2007)
Quality Measures in Data Mining
, pp. 3-24
-
-
Geng, L.1
Hamilton, H.2
-
9
-
-
33846419833
-
Association rule interestingness: measure and statistical validation
-
Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
-
Lallich S., Teytaud O., and Prudhomme E. Association rule interestingness: measure and statistical validation. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 251-275
-
(2007)
Quality Measures in Data Mining
, pp. 251-275
-
-
Lallich, S.1
Teytaud, O.2
Prudhomme, E.3
-
10
-
-
23044527560
-
Detecting group differences. mining contrast sets
-
Bay S., and Pazzani M. Detecting group differences. mining contrast sets. Data Mining and Knowledge Discovery 5 (2001) 213-246
-
(2001)
Data Mining and Knowledge Discovery
, vol.5
, pp. 213-246
-
-
Bay, S.1
Pazzani, M.2
-
11
-
-
33846422016
-
Statistical methodologies for mining potentially interesting contrast sets
-
Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
-
Hilderman R., and Peckham T. Statistical methodologies for mining potentially interesting contrast sets. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 153-177
-
(2007)
Quality Measures in Data Mining
, pp. 153-177
-
-
Hilderman, R.1
Peckham, T.2
-
12
-
-
77950484598
-
Une mesure probabiliste contextuelle discriminante de qualite des règles d'association
-
Hermes Science Publications, Lavoisier
-
Lerman L., and Azè J. Une mesure probabiliste contextuelle discriminante de qualite des règles d'association. EGC 2003: Extraction et Gestion des Connaissances (2003), Hermes Science Publications, Lavoisier 247-263
-
(2003)
EGC 2003: Extraction et Gestion des Connaissances
, pp. 247-263
-
-
Lerman, L.1
Azè, J.2
-
13
-
-
33846447487
-
Association rule interestingness meaures: experimental and theoretical studies
-
Guillet F., and Hamilton H. (Eds), Springer Verlag, Berlin
-
Lenca P., Vaiilant B., Meyer P., and Lalich S. Association rule interestingness meaures: experimental and theoretical studies. In: Guillet F., and Hamilton H. (Eds). Quality Measures in Data Mining (2007), Springer Verlag, Berlin 51-76
-
(2007)
Quality Measures in Data Mining
, pp. 51-76
-
-
Lenca, P.1
Vaiilant, B.2
Meyer, P.3
Lalich, S.4
-
18
-
-
36248940832
-
Machine learning based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research
-
Peterson L., and Coleman M. Machine learning based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research. International Journal of Approximate Reasoning 47 (2008) 17-36
-
(2008)
International Journal of Approximate Reasoning
, vol.47
, pp. 17-36
-
-
Peterson, L.1
Coleman, M.2
-
22
-
-
0001371923
-
Fast discovery of association rules
-
AAAI Press, Menlo Park
-
Agrawal R., Mannila H., Srikant R., Toivonen H., and Verkamo A. Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining (1996), AAAI Press, Menlo Park 307-328
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.5
-
23
-
-
0019063015
-
Knowledge acquisition through conceptual clustering: a theoretical framework and algorithm for partitioning data into conjunctive concepts
-
Michalski R. Knowledge acquisition through conceptual clustering: a theoretical framework and algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Information Systems 4 (1980) 219-243
-
(1980)
International Journal of Policy Analysis and Information Systems
, vol.4
, pp. 219-243
-
-
Michalski, R.1
-
25
-
-
85015191605
-
Rule induction with CN2: some recent improvements
-
Springer Verlag, New York
-
Clark P., and Boswell R. Rule induction with CN2: some recent improvements. Machine Learning - EWSL-91 (1991), Springer Verlag, New York 151-163
-
(1991)
Machine Learning - EWSL-91
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
-
26
-
-
0004174560
-
-
Kluwer Academic Publishers, Dordrecht
-
Pawlak Z. Rough Sets (1991), Kluwer Academic Publishers, Dordrecht
-
(1991)
Rough Sets
-
-
Pawlak, Z.1
-
27
-
-
36248994777
-
A rough set approach for the discovery of classification rules in interval-valued information systems
-
Leung Y., Fischer M., Wu W., and Mi J. A rough set approach for the discovery of classification rules in interval-valued information systems. International Journal of Approximate Reasoning 47 (2008) 233-246
-
(2008)
International Journal of Approximate Reasoning
, vol.47
, pp. 233-246
-
-
Leung, Y.1
Fischer, M.2
Wu, W.3
Mi, J.4
-
32
-
-
0029273384
-
Neuro-fuzzy modeling and control
-
Jang J., and Sun C. Neuro-fuzzy modeling and control. The Proceedings of the IEEE 83 (1995) 378-406
-
(1995)
The Proceedings of the IEEE
, vol.83
, pp. 378-406
-
-
Jang, J.1
Sun, C.2
-
33
-
-
0032114652
-
NEFCLASS-X: a neuro-fuzzy tool to build readable fuzzy classifiers
-
Nauck D., and Kruse R. NEFCLASS-X: a neuro-fuzzy tool to build readable fuzzy classifiers. BT Technology Journal 3 (1998) 180-192
-
(1998)
BT Technology Journal
, vol.3
, pp. 180-192
-
-
Nauck, D.1
Kruse, R.2
-
35
-
-
0001181941
-
Fuzzy hypotheses for GUHA implications
-
Holeňa M. Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems 98 (1998) 101-125
-
(1998)
Fuzzy Sets and Systems
, vol.98
, pp. 101-125
-
-
Holeňa, M.1
-
36
-
-
2942560785
-
Fuzzy hypotheses testing in the framework of fuzzy logic
-
Holeňa M. Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets and Systems 145 (2004) 229-252
-
(2004)
Fuzzy Sets and Systems
, vol.145
, pp. 229-252
-
-
Holeňa, M.1
-
37
-
-
40049106001
-
Mining pure linguistic associations from numerical data
-
Novák V., Perfilieva I., Dvořák A., Chen C., Wei Q., and Yan P. Mining pure linguistic associations from numerical data. International Journal of Approximate Reasoning 48 (2008) 4-22
-
(2008)
International Journal of Approximate Reasoning
, vol.48
, pp. 4-22
-
-
Novák, V.1
Perfilieva, I.2
Dvořák, A.3
Chen, C.4
Wei, Q.5
Yan, P.6
-
38
-
-
0003802343
-
-
Wadsworth, Belmont
-
Breiman L., Friedman J., Olshen R., and Stone C. Classification and Regression Trees (1984), Wadsworth, Belmont
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
40
-
-
0035271419
-
A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
-
Duch W., Adamczak R., and Grabczewski K. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 11 (2000) 277-306
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 277-306
-
-
Duch, W.1
Adamczak, R.2
Grabczewski, K.3
-
41
-
-
0033742671
-
Extracting rules from trained neural networks
-
Tsukimoto H. Extracting rules from trained neural networks. IEEE Transactions on Neural Networks 11 (2000) 333-389
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 333-389
-
-
Tsukimoto, H.1
-
42
-
-
33750596411
-
Piecewise-linear neural networks and their relationship to rule extraction from data
-
Holeňa M. Piecewise-linear neural networks and their relationship to rule extraction from data. Neural Computation 18 (2006) 2813-2853
-
(2006)
Neural Computation
, vol.18
, pp. 2813-2853
-
-
Holeňa, M.1
-
43
-
-
0032208720
-
The truth will come to light: directions and challenges in extracting rules from trained artificial neural networks
-
Tickle A., Andrews R., Golea M., and Diederich J. The truth will come to light: directions and challenges in extracting rules from trained artificial neural networks. IEEE Transactions on Neural Networks 9 (1998) 1057-1068
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, pp. 1057-1068
-
-
Tickle, A.1
Andrews, R.2
Golea, M.3
Diederich, J.4
-
44
-
-
0034187785
-
Neuro-fuzzy rule generation: survey in soft computing framework
-
Mitra S., and Hayashi Y. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 11 (2000) 748-768
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 748-768
-
-
Mitra, S.1
Hayashi, Y.2
-
45
-
-
9144229595
-
Academic KDD project LISP-Miner
-
Abraham A., Franke K., and Koppen K. (Eds), Springer Verlag, Heidelberg
-
Šim̊unek M. Academic KDD project LISP-Miner. In: Abraham A., Franke K., and Koppen K. (Eds). Advances in Soft Computing - Systems Design and Applications (2003), Springer Verlag, Heidelberg 263-272
-
(2003)
Advances in Soft Computing - Systems Design and Applications
, pp. 263-272
-
-
Šim̊unek, M.1
-
46
-
-
0037467664
-
Formal logics of discovery and hypothesis formation by machine
-
Hájek P., and Holeňa M. Formal logics of discovery and hypothesis formation by machine. Theoretical Computer Science 292 (2003) 345-357
-
(2003)
Theoretical Computer Science
, vol.292
, pp. 345-357
-
-
Hájek, P.1
Holeňa, M.2
-
47
-
-
25444464640
-
Extraction of fuzzy logic rules from data by means of artificial neural networks
-
Holeňa M. Extraction of fuzzy logic rules from data by means of artificial neural networks. Kybernetika 41 (2005) 297-314
-
(2005)
Kybernetika
, vol.41
, pp. 297-314
-
-
Holeňa, M.1
-
48
-
-
38049153871
-
Neural networks for extraction of fuzzy logic rules with application to EEG data
-
Ribeiro B., Albrecht R., and Dobnikar A. (Eds), Springer Verlag, Wein
-
Holeňa M. Neural networks for extraction of fuzzy logic rules with application to EEG data. In: Ribeiro B., Albrecht R., and Dobnikar A. (Eds). Adaptive and Natural Computing Algorithms (2005), Springer Verlag, Wein 369-372
-
(2005)
Adaptive and Natural Computing Algorithms
, pp. 369-372
-
-
Holeňa, M.1
-
49
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher R. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 (1936) 179-188
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.1
|