-
3
-
-
0012377619
-
Logics of scientific discovery
-
Stanford University
-
B.G. Buchanan, Logics of Scientific Discovery, Stanford AI Memo No. 47, Stanford University 1966.
-
(1966)
Stanford AI Memo
, vol.47
-
-
Buchanan, B.G.1
-
4
-
-
1942422934
-
Model uncertainty, data mining and statistical inference
-
Chatfield C. Model uncertainty, data mining and statistical inference. J. Roy. Statist. Soc. Ser. A. 158:1995;419-466.
-
(1995)
J. Roy. Statist. Soc. Ser. A
, vol.158
, pp. 419-466
-
-
Chatfield, C.1
-
5
-
-
0033307261
-
Pattern discovery by residual analysis and recursive partitioning
-
Chau T., Wong A.K.C. Pattern discovery by residual analysis and recursive partitioning. IEEE Trans. Knowledge Data Eng. 11:1999;833-852.
-
(1999)
IEEE Trans. Knowledge Data Eng.
, vol.11
, pp. 833-852
-
-
Chau, T.1
Wong, A.K.C.2
-
6
-
-
0012415657
-
-
Technical Report, ACM
-
CODASYL Data Base Task Group, DBTG Report, Technical Report, ACM, 1971.
-
(1971)
DBTG Report
-
-
-
7
-
-
0012418641
-
Testing interpersonal hypothesis of music using GUHA method
-
J. Doubravová, A. Sochorová, Testing interpersonal hypothesis of music using GUHA method. Languages Des., 1996.
-
(1996)
Languages Des.
-
-
Doubravová, J.1
Sochorová, A.2
-
8
-
-
0002433547
-
From data mining to knowledge discovery: An overview
-
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy. Menlo Park, CA: AAAI Press
-
Fayyad U., Piatetsky-Shapiro G., Smyth P. From data mining to knowledge discovery: an overview. Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining. 1996;1-36 AAAI Press, Menlo Park, CA.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 1-36
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
9
-
-
0001790815
-
Knowledge discovery in databases: An overview
-
G. Piatetsky-Shapiro, & W. Frawley. Menlo Park, CA: AAAI Press
-
Frawley W., Piatetsky-Shapiro G., Matheus C. Knowledge discovery in databases. an overview Piatetsky-Shapiro G., Frawley W. Knowledge Discovery in Databases. 1991;1-27 AAAI Press, Menlo Park, CA.
-
(1991)
Knowledge Discovery in Databases
, pp. 1-27
-
-
Frawley, W.1
Piatetsky-Shapiro, G.2
Matheus, C.3
-
11
-
-
0034485633
-
Reasoning about probability using fuzzy logic
-
Godo L., Esteva F., Hájek P. Reasoning about probability using fuzzy logic. Neural Network World. 10:2000;811-824.
-
(2000)
Neural Network World
, vol.10
, pp. 811-824
-
-
Godo, L.1
Esteva, F.2
Hájek, P.3
-
12
-
-
85025412395
-
On logics of discovery
-
Mathematical Foundations of Computer Science, Springer, Berlin
-
P. Hájek, On logics of discovery, in: Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 32, 1975, Springer, Berlin, pp. 30-45.
-
(1975)
Lecture Notes in Computer Science
, vol.32
, pp. 30-45
-
-
Hájek, P.1
-
13
-
-
0019632085
-
Decision problems of some statistically motivated monadic modal calculi
-
Hájek P. Decision problems of some statistically motivated monadic modal calculi. Internat. J. Man-Mach. Stud. 15:1981;351-358.
-
(1981)
Internat. J. Man-Mach. Stud.
, vol.15
, pp. 351-358
-
-
Hájek, P.1
-
14
-
-
0012412015
-
The new version of the GUHA procedure ASSOC (generating hypotheses on associations) - Mathematical foundations
-
P. Hájek, The new version of the GUHA procedure ASSOC (generating hypotheses on associations) - mathematical foundations, in: COMPSTAT 1984 - Proc. in Computational Statistics, 1984, pp. 360-365.
-
(1984)
COMPSTAT 1984 - Proc. in Computational Statistics
, pp. 360-365
-
-
Hájek, P.1
-
17
-
-
0012462430
-
The GUHA-method of automatic hypotheses determination
-
Hájek P., Havel I., Chytil M. The GUHA-method of automatic hypotheses determination. Computing. 1:1966;293-308.
-
(1966)
Computing
, vol.1
, pp. 293-308
-
-
Hájek, P.1
Havel, I.2
Chytil, M.3
-
19
-
-
0003771030
-
-
Mathematical Foundations for a General Theory, Springer, Berlin, Heidelberg, New York
-
P. Hájek, T. Havránek, Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory), Springer, Berlin, Heidelberg, New York, 1978; also www.cs.cas.cz/̃hajek/guhabook.
-
(1978)
Mechanizing Hypothesis Formation
-
-
Hájek, P.1
Havránek, T.2
-
20
-
-
84949188149
-
Formal logics of discovery and hypothesis formation by machine
-
S. Arikawa, & H. Motoda. Berlin, Tokyo: Springer
-
Hájek P., Holeňa M. Formal logics of discovery and hypothesis formation by machine. Arikawa S., Motoda H. Discovery Science. 1998;291-302 Springer, Berlin, Tokyo.
-
(1998)
Discovery Science
, pp. 291-302
-
-
Hájek, P.1
Holeňa, M.2
-
22
-
-
2642590960
-
QSAR of catechol analogs against malignant melanoma using fingerprint descriptors
-
Hálová J., Štrouf O., Žák P., Sochorová A., Uchida N., Yuzuvi T., Sakakibava K., Hirota M. QSAR of catechol analogs against malignant melanoma using fingerprint descriptors. Quant. Struct.-Act. Relat. 17:1998;37-39.
-
(1998)
Quant. Struct.-Act. Relat.
, vol.17
, pp. 37-39
-
-
Hálová, J.1
Štrouf, O.2
Žák, P.3
Sochorová, A.4
Uchida, N.5
Yuzuvi, T.6
Sakakibava, K.7
Hirota, M.8
-
23
-
-
0002927504
-
Overview of the GUHA method for automating knowledge discovery in statistical data sets
-
M. Noirhomme-Fraiture. Luxembourg: Eurostat
-
Harmancová D., Holeňa M., Sochorová A. Overview of the GUHA method for automating knowledge discovery in statistical data sets. Noirhomme-Fraiture M. Knowledge Extraction and Symbolic Data Analysis. 1999;65-77 Eurostat, Luxembourg.
-
(1999)
Knowledge Extraction and Symbolic Data Analysis
, pp. 65-77
-
-
Harmancová, D.1
Holeňa, M.2
Sochorová, A.3
-
24
-
-
0012419776
-
The approximation problem in computational statistics
-
J. Bečvář Mathematical Foundations of Computer Science '75
-
Havránek T. The approximation problem in computational statistics. Bečvář J. Mathematical Foundations of Computer Science '75. Lecture Notes in Computer Science. Vol. 32:1975;258-265.
-
(1975)
Lecture Notes in Computer Science
, vol.32
, pp. 258-265
-
-
Havránek, T.1
-
25
-
-
0002050436
-
Statistical quantifiers in observational calculi: An application in GUHA method
-
Havránek T. Statistical quantifiers in observational calculi: an application in GUHA method. Theory and Decision. 6:1975;213-230.
-
(1975)
Theory and Decision
, vol.6
, pp. 213-230
-
-
Havránek, T.1
-
26
-
-
0012374712
-
Towards a model theory of statistical theories
-
Havránek T. Towards a model theory of statistical theories. Synthese. 36:1977;441-458.
-
(1977)
Synthese
, vol.36
, pp. 441-458
-
-
Havránek, T.1
-
27
-
-
0002647748
-
Exploratory data processing using a fuzzy generalization of the GUHA approach
-
J. Baldwin. New York: Wiley
-
Holeňa M. Exploratory data processing using a fuzzy generalization of the GUHA approach. Baldwin J. Fuzzy Logic. 1996;213-229 Wiley, New York.
-
(1996)
Fuzzy Logic
, pp. 213-229
-
-
Holeňa, M.1
-
28
-
-
0001181941
-
Fuzzy hypotheses for GUHA implications
-
Holeňa M. Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems. 98:1998;101-125.
-
(1998)
Fuzzy Sets and Systems
, vol.98
, pp. 101-125
-
-
Holeňa, M.1
-
29
-
-
0012416252
-
Traditional and modern artificial intelligence explores ecological data
-
H. Hyötyniemi, (Ed.)
-
M. Holeňa, Traditional and modern artificial intelligence explores ecological data, in: H. Hyötyniemi, (Ed.), STeP 2000: Millenium of Artificial Intelligence, 2000.
-
(2000)
STeP 2000: Millenium of Artificial Intelligence
-
-
Holeňa, M.1
-
30
-
-
84974695520
-
Observational logic integrates data mining based on statistics and neural networks
-
D.A. Zighed, J. Komorowski, & J.M. Zytkov. Berlin: Springer
-
Holeňa M. Observational logic integrates data mining based on statistics and neural networks. Zighed D.A., Komorowski J., Zytkov J.M. Principles of Data Mining and Knowledge Discovery. 2000;440-445 Springer, Berlin.
-
(2000)
Principles of Data Mining and Knowledge Discovery
, pp. 440-445
-
-
Holeňa, M.1
-
31
-
-
0012417172
-
A fuzzy logic framework for testing vague hypotheses with empirical data
-
Proc. Fourth Internat, ICSC Academic Press, Sliedrecht
-
M. Holeňa, A fuzzy logic framework for testing vague hypotheses with empirical data, in: Proc. Fourth Internat. ICSC Symp. on Soft Computing and Intelligent Systems for Industry, ICSC Academic Press, Sliedrecht, 2001 pp. 401-407.
-
(2001)
ICSC Symp. on Soft Computing and Intelligent Systems for Industry
, pp. 401-407
-
-
Holeňa, M.1
-
32
-
-
0012374713
-
Statistical, logic-based, and neural networks based methods for mining rules from data
-
A.K. Hyder, V. Bystritskii (Eds.), NATO Science Series Publishers, in preparation
-
M. Holeňa, Statistical, logic-based, and neural networks based methods for mining rules from data, in: A.K. Hyder, V. Bystritskii (Eds.), Multisensor and Sensor Data Fusion, NATO Science Series Publishers, in preparation.
-
Multisensor and Sensor Data Fusion
-
-
Holeňa, M.1
-
33
-
-
0033254813
-
Increasing the diversity of medical data mining through distributed object technology
-
P. Kokol, B. Zupan, J. Stare, M. Premik, & R. Engelbrecht. Amsterdam: IOS Press
-
Holeňa M., Sochorová A., Zvárová J. Increasing the diversity of medical data mining through distributed object technology. Kokol P., Zupan B., Stare J., Premik M., Engelbrecht R. Medical Informatics Europe '99. 1999;442-447 IOS Press, Amsterdam.
-
(1999)
Medical Informatics Europe '99
, pp. 442-447
-
-
Holeňa, M.1
Sochorová, A.2
Zvárová, J.3
-
34
-
-
0003901315
-
-
Technical Report, CWI, Amsterdam
-
M. Holsheimer, A. Siebes, Data mining, The search for knowledge in databases, Technical Report, CWI, Amsterdam, 1994.
-
(1994)
Data Mining, The Search for Knowledge in Databases
-
-
Holsheimer, M.1
Siebes, A.2
-
36
-
-
0003880722
-
-
Technical Report, Database Systems Research Laboratory, Simon Fraser University
-
M. Kamber, J. Han, J. Chiang, Using data cubes for metarule-guided mining of multi-dimensional association rules, Technical Report, Database Systems Research Laboratory, Simon Fraser University, 1997.
-
(1997)
Using Data Cubes for Metarule-Guided Mining of Multi-Dimensional Association Rules
-
-
Kamber, M.1
Han, J.2
Chiang, J.3
-
37
-
-
0002500723
-
Probability quantifiers
-
J. Barwise, & S. Feferman. New York: Springer
-
Keisler U.J. Probability quantifiers. Barwise J., Feferman S. Model-Theoretic Logics. 1985;539-556 Springer, New York.
-
(1985)
Model-Theoretic Logics
, pp. 539-556
-
-
Keisler, U.J.1
-
38
-
-
0029221256
-
Efficient discovery of interesting statements in databases
-
Klösgen W. Efficient discovery of interesting statements in databases. J. Intell. Inform. Systems. 4:1995;53-69.
-
(1995)
J. Intell. Inform. Systems
, vol.4
, pp. 53-69
-
-
Klösgen, W.1
-
39
-
-
0002192370
-
Explora: A multipattern and multistrategy discovery assistant
-
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy. Menlo Park, CA: AAAI Press
-
Klösgen W. Explora. a multipattern and multistrategy discovery assistant Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining. 1996;249-272 AAAI Press, Menlo Park, CA.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 249-272
-
-
Klösgen, W.1
-
44
-
-
0001280495
-
Efficient algorithms for discovering association rules
-
U. Fayyad, & R. Uthurusamy. Menlo Park, CA: AAAI Press
-
Mannila H., Toivonen H., Verkamo I. Efficient algorithms for discovering association rules. Fayyad U., Uthurusamy R. Knowledge Discovery in Databases. 1994;181-192 AAAI Press, Menlo Park, CA.
-
(1994)
Knowledge Discovery in Databases
, pp. 181-192
-
-
Mannila, H.1
Toivonen, H.2
Verkamo, I.3
-
45
-
-
0003959442
-
-
Technical Report, Department of Computer Science, University of Maryland, College Park
-
A. Mueller, Fast sequential and parallel algorithms for association rule mining: a comparison, Technical Report, Department of Computer Science, University of Maryland, College Park, 1995.
-
(1995)
Fast Sequential and Parallel Algorithms for Association Rule Mining: A Comparison
-
-
Mueller, A.1
-
46
-
-
0029700154
-
Non-linear mathematical interpretation of the oncological data
-
Pecen L., Eben K. Non-linear mathematical interpretation of the oncological data. Neural Network World. 6:1996;683-690.
-
(1996)
Neural Network World
, vol.6
, pp. 683-690
-
-
Pecen, L.1
Eben, K.2
-
47
-
-
0012473554
-
Short-term fx market analysis and prediction
-
L. Pecen, E. Pelikán, H. Beran, D. Pivka, Short-term fx market analysis and prediction, in: Neural Networks in Financial Engeneering, 1996, pp. 189-196.
-
(1996)
Neural Networks in Financial Engeneering
, pp. 189-196
-
-
Pecen, L.1
Pelikán, E.2
Beran, H.3
Pivka, D.4
-
49
-
-
0003203117
-
A further note on inductive generalization
-
Plotkin G.D. A further note on inductive generalization. Mach. Intell. 6:1971;101-124.
-
(1971)
Mach. Intell.
, vol.6
, pp. 101-124
-
-
Plotkin, G.D.1
-
51
-
-
0012406918
-
Complexity in mechanizing hypothesis formation
-
Pudlák P., Springsteel F. Complexity in mechanizing hypothesis formation. Theoret. Comput. Sci. 8:1979;203-225.
-
(1979)
Theoret. Comput. Sci.
, vol.8
, pp. 203-225
-
-
Pudlák, P.1
Springsteel, F.2
-
53
-
-
0012440227
-
Logical calculi for knowledge discovery in databases
-
Principles of Data Mining and Knowledge Discovery Komarowski, Zytkov. Berlin: Springer
-
Rauch J. Logical calculi for knowledge discovery in databases. Zytkov Komarowski, Principles of Data Mining and Knowledge Discovery. Lecture Notes in AL. Vol. 1263:1997;Springer, Berlin.
-
(1997)
Lecture Notes in AL
, vol.1263
-
-
Rauch, J.1
-
54
-
-
84947760031
-
Classes of four-fold table quantifiers
-
Quafafou, & Zytkov. Berlin: Springer
-
Rauch J. Classes of four-fold table quantifiers. Quafafou, Zytkov Principles of Data Mining and Knowledge Discovery. 1998;203-210 Springer, Berlin.
-
(1998)
Principles of Data Mining and Knowledge Discovery
, pp. 203-210
-
-
Rauch, J.1
-
55
-
-
85162588849
-
Mining association rules with item constraints
-
R. Srikant, Q. Vu, R. Agrawal, Mining association rules with item constraints, in: Proc. Third Internat. Conf. on Knowledge Discovery and Data Mining, KDD-97, 1997.
-
(1997)
Proc. Third Internat. Conf. on Knowledge Discovery and Data Mining
, vol.KDD-97
-
-
Srikant, R.1
Vu, Q.2
Agrawal, R.3
-
59
-
-
0027035668
-
On a semantics for neural networks based on fuzzy quantifiers
-
Yager R. On a semantics for neural networks based on fuzzy quantifiers. Internat. J. Intell. Systems. 7:1992;765-786.
-
(1992)
Internat. J. Intell. Systems
, vol.7
, pp. 765-786
-
-
Yager, R.1
-
60
-
-
0002893645
-
What is soft computing?
-
Editorial
-
Zadeh L.A. What is soft computing? (Editorial) Soft Comput. 1:1997;1.
-
(1997)
Soft Comput.
, vol.1
, pp. 1
-
-
Zadeh, L.A.1
-
62
-
-
0002598545
-
From contingency tables to various forms of knowledge in databases
-
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy. Menlo Park, CA: AAAI Press
-
Zembowicz R., Zytkov J. From contingency tables to various forms of knowledge in databases. Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining. 1996;329-352 AAAI Press, Menlo Park, CA.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 329-352
-
-
Zembowicz, R.1
Zytkov, J.2
-
64
-
-
0031170172
-
Contingency tables as the foundation for concepts, concept hierarchies and rules: The 49er system approach
-
Zytkov J., Zembowicz R. Contingency tables as the foundation for concepts, concept hierarchies and rules: the 49er system approach. Fund. Inform. 30:1997;383-399.
-
(1997)
Fund. Inform.
, vol.30
, pp. 383-399
-
-
Zytkov, J.1
Zembowicz, R.2
|