메뉴 건너뛰기




Volumn 292, Issue 2, 2003, Pages 345-357

Formal logics of discovery and hypothesis formation by machine

Author keywords

Data analysis; Data Mining; Fuzzy logic; GUHA method; Hypothesis generation; Logic of discovery

Indexed keywords

DATA MINING; DATA REDUCTION; FUZZY SETS; SEMANTICS;

EID: 0037467664     PISSN: 03043975     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-3975(02)00175-5     Document Type: Conference Paper
Times cited : (16)

References (64)
  • 3
    • 0012377619 scopus 로고
    • Logics of scientific discovery
    • Stanford University
    • B.G. Buchanan, Logics of Scientific Discovery, Stanford AI Memo No. 47, Stanford University 1966.
    • (1966) Stanford AI Memo , vol.47
    • Buchanan, B.G.1
  • 4
    • 1942422934 scopus 로고
    • Model uncertainty, data mining and statistical inference
    • Chatfield C. Model uncertainty, data mining and statistical inference. J. Roy. Statist. Soc. Ser. A. 158:1995;419-466.
    • (1995) J. Roy. Statist. Soc. Ser. A , vol.158 , pp. 419-466
    • Chatfield, C.1
  • 5
    • 0033307261 scopus 로고    scopus 로고
    • Pattern discovery by residual analysis and recursive partitioning
    • Chau T., Wong A.K.C. Pattern discovery by residual analysis and recursive partitioning. IEEE Trans. Knowledge Data Eng. 11:1999;833-852.
    • (1999) IEEE Trans. Knowledge Data Eng. , vol.11 , pp. 833-852
    • Chau, T.1    Wong, A.K.C.2
  • 6
    • 0012415657 scopus 로고
    • Technical Report, ACM
    • CODASYL Data Base Task Group, DBTG Report, Technical Report, ACM, 1971.
    • (1971) DBTG Report
  • 7
    • 0012418641 scopus 로고    scopus 로고
    • Testing interpersonal hypothesis of music using GUHA method
    • J. Doubravová, A. Sochorová, Testing interpersonal hypothesis of music using GUHA method. Languages Des., 1996.
    • (1996) Languages Des.
    • Doubravová, J.1    Sochorová, A.2
  • 8
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: An overview
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy. Menlo Park, CA: AAAI Press
    • Fayyad U., Piatetsky-Shapiro G., Smyth P. From data mining to knowledge discovery: an overview. Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining. 1996;1-36 AAAI Press, Menlo Park, CA.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 1-36
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 9
    • 0001790815 scopus 로고
    • Knowledge discovery in databases: An overview
    • G. Piatetsky-Shapiro, & W. Frawley. Menlo Park, CA: AAAI Press
    • Frawley W., Piatetsky-Shapiro G., Matheus C. Knowledge discovery in databases. an overview Piatetsky-Shapiro G., Frawley W. Knowledge Discovery in Databases. 1991;1-27 AAAI Press, Menlo Park, CA.
    • (1991) Knowledge Discovery in Databases , pp. 1-27
    • Frawley, W.1    Piatetsky-Shapiro, G.2    Matheus, C.3
  • 11
    • 0034485633 scopus 로고    scopus 로고
    • Reasoning about probability using fuzzy logic
    • Godo L., Esteva F., Hájek P. Reasoning about probability using fuzzy logic. Neural Network World. 10:2000;811-824.
    • (2000) Neural Network World , vol.10 , pp. 811-824
    • Godo, L.1    Esteva, F.2    Hájek, P.3
  • 12
    • 85025412395 scopus 로고
    • On logics of discovery
    • Mathematical Foundations of Computer Science, Springer, Berlin
    • P. Hájek, On logics of discovery, in: Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 32, 1975, Springer, Berlin, pp. 30-45.
    • (1975) Lecture Notes in Computer Science , vol.32 , pp. 30-45
    • Hájek, P.1
  • 13
    • 0019632085 scopus 로고
    • Decision problems of some statistically motivated monadic modal calculi
    • Hájek P. Decision problems of some statistically motivated monadic modal calculi. Internat. J. Man-Mach. Stud. 15:1981;351-358.
    • (1981) Internat. J. Man-Mach. Stud. , vol.15 , pp. 351-358
    • Hájek, P.1
  • 14
    • 0012412015 scopus 로고
    • The new version of the GUHA procedure ASSOC (generating hypotheses on associations) - Mathematical foundations
    • P. Hájek, The new version of the GUHA procedure ASSOC (generating hypotheses on associations) - mathematical foundations, in: COMPSTAT 1984 - Proc. in Computational Statistics, 1984, pp. 360-365.
    • (1984) COMPSTAT 1984 - Proc. in Computational Statistics , pp. 360-365
    • Hájek, P.1
  • 17
    • 0012462430 scopus 로고
    • The GUHA-method of automatic hypotheses determination
    • Hájek P., Havel I., Chytil M. The GUHA-method of automatic hypotheses determination. Computing. 1:1966;293-308.
    • (1966) Computing , vol.1 , pp. 293-308
    • Hájek, P.1    Havel, I.2    Chytil, M.3
  • 19
    • 0003771030 scopus 로고
    • Mathematical Foundations for a General Theory, Springer, Berlin, Heidelberg, New York
    • P. Hájek, T. Havránek, Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory), Springer, Berlin, Heidelberg, New York, 1978; also www.cs.cas.cz/̃hajek/guhabook.
    • (1978) Mechanizing Hypothesis Formation
    • Hájek, P.1    Havránek, T.2
  • 20
    • 84949188149 scopus 로고    scopus 로고
    • Formal logics of discovery and hypothesis formation by machine
    • S. Arikawa, & H. Motoda. Berlin, Tokyo: Springer
    • Hájek P., Holeňa M. Formal logics of discovery and hypothesis formation by machine. Arikawa S., Motoda H. Discovery Science. 1998;291-302 Springer, Berlin, Tokyo.
    • (1998) Discovery Science , pp. 291-302
    • Hájek, P.1    Holeňa, M.2
  • 23
    • 0002927504 scopus 로고    scopus 로고
    • Overview of the GUHA method for automating knowledge discovery in statistical data sets
    • M. Noirhomme-Fraiture. Luxembourg: Eurostat
    • Harmancová D., Holeňa M., Sochorová A. Overview of the GUHA method for automating knowledge discovery in statistical data sets. Noirhomme-Fraiture M. Knowledge Extraction and Symbolic Data Analysis. 1999;65-77 Eurostat, Luxembourg.
    • (1999) Knowledge Extraction and Symbolic Data Analysis , pp. 65-77
    • Harmancová, D.1    Holeňa, M.2    Sochorová, A.3
  • 24
    • 0012419776 scopus 로고
    • The approximation problem in computational statistics
    • J. Bečvář Mathematical Foundations of Computer Science '75
    • Havránek T. The approximation problem in computational statistics. Bečvář J. Mathematical Foundations of Computer Science '75. Lecture Notes in Computer Science. Vol. 32:1975;258-265.
    • (1975) Lecture Notes in Computer Science , vol.32 , pp. 258-265
    • Havránek, T.1
  • 25
    • 0002050436 scopus 로고
    • Statistical quantifiers in observational calculi: An application in GUHA method
    • Havránek T. Statistical quantifiers in observational calculi: an application in GUHA method. Theory and Decision. 6:1975;213-230.
    • (1975) Theory and Decision , vol.6 , pp. 213-230
    • Havránek, T.1
  • 26
    • 0012374712 scopus 로고
    • Towards a model theory of statistical theories
    • Havránek T. Towards a model theory of statistical theories. Synthese. 36:1977;441-458.
    • (1977) Synthese , vol.36 , pp. 441-458
    • Havránek, T.1
  • 27
    • 0002647748 scopus 로고    scopus 로고
    • Exploratory data processing using a fuzzy generalization of the GUHA approach
    • J. Baldwin. New York: Wiley
    • Holeňa M. Exploratory data processing using a fuzzy generalization of the GUHA approach. Baldwin J. Fuzzy Logic. 1996;213-229 Wiley, New York.
    • (1996) Fuzzy Logic , pp. 213-229
    • Holeňa, M.1
  • 28
    • 0001181941 scopus 로고    scopus 로고
    • Fuzzy hypotheses for GUHA implications
    • Holeňa M. Fuzzy hypotheses for GUHA implications. Fuzzy Sets and Systems. 98:1998;101-125.
    • (1998) Fuzzy Sets and Systems , vol.98 , pp. 101-125
    • Holeňa, M.1
  • 29
    • 0012416252 scopus 로고    scopus 로고
    • Traditional and modern artificial intelligence explores ecological data
    • H. Hyötyniemi, (Ed.)
    • M. Holeňa, Traditional and modern artificial intelligence explores ecological data, in: H. Hyötyniemi, (Ed.), STeP 2000: Millenium of Artificial Intelligence, 2000.
    • (2000) STeP 2000: Millenium of Artificial Intelligence
    • Holeňa, M.1
  • 30
    • 84974695520 scopus 로고    scopus 로고
    • Observational logic integrates data mining based on statistics and neural networks
    • D.A. Zighed, J. Komorowski, & J.M. Zytkov. Berlin: Springer
    • Holeňa M. Observational logic integrates data mining based on statistics and neural networks. Zighed D.A., Komorowski J., Zytkov J.M. Principles of Data Mining and Knowledge Discovery. 2000;440-445 Springer, Berlin.
    • (2000) Principles of Data Mining and Knowledge Discovery , pp. 440-445
    • Holeňa, M.1
  • 31
    • 0012417172 scopus 로고    scopus 로고
    • A fuzzy logic framework for testing vague hypotheses with empirical data
    • Proc. Fourth Internat, ICSC Academic Press, Sliedrecht
    • M. Holeňa, A fuzzy logic framework for testing vague hypotheses with empirical data, in: Proc. Fourth Internat. ICSC Symp. on Soft Computing and Intelligent Systems for Industry, ICSC Academic Press, Sliedrecht, 2001 pp. 401-407.
    • (2001) ICSC Symp. on Soft Computing and Intelligent Systems for Industry , pp. 401-407
    • Holeňa, M.1
  • 32
    • 0012374713 scopus 로고    scopus 로고
    • Statistical, logic-based, and neural networks based methods for mining rules from data
    • A.K. Hyder, V. Bystritskii (Eds.), NATO Science Series Publishers, in preparation
    • M. Holeňa, Statistical, logic-based, and neural networks based methods for mining rules from data, in: A.K. Hyder, V. Bystritskii (Eds.), Multisensor and Sensor Data Fusion, NATO Science Series Publishers, in preparation.
    • Multisensor and Sensor Data Fusion
    • Holeňa, M.1
  • 33
    • 0033254813 scopus 로고    scopus 로고
    • Increasing the diversity of medical data mining through distributed object technology
    • P. Kokol, B. Zupan, J. Stare, M. Premik, & R. Engelbrecht. Amsterdam: IOS Press
    • Holeňa M., Sochorová A., Zvárová J. Increasing the diversity of medical data mining through distributed object technology. Kokol P., Zupan B., Stare J., Premik M., Engelbrecht R. Medical Informatics Europe '99. 1999;442-447 IOS Press, Amsterdam.
    • (1999) Medical Informatics Europe '99 , pp. 442-447
    • Holeňa, M.1    Sochorová, A.2    Zvárová, J.3
  • 37
    • 0002500723 scopus 로고
    • Probability quantifiers
    • J. Barwise, & S. Feferman. New York: Springer
    • Keisler U.J. Probability quantifiers. Barwise J., Feferman S. Model-Theoretic Logics. 1985;539-556 Springer, New York.
    • (1985) Model-Theoretic Logics , pp. 539-556
    • Keisler, U.J.1
  • 38
    • 0029221256 scopus 로고
    • Efficient discovery of interesting statements in databases
    • Klösgen W. Efficient discovery of interesting statements in databases. J. Intell. Inform. Systems. 4:1995;53-69.
    • (1995) J. Intell. Inform. Systems , vol.4 , pp. 53-69
    • Klösgen, W.1
  • 39
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy. Menlo Park, CA: AAAI Press
    • Klösgen W. Explora. a multipattern and multistrategy discovery assistant Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining. 1996;249-272 AAAI Press, Menlo Park, CA.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-272
    • Klösgen, W.1
  • 44
    • 0001280495 scopus 로고
    • Efficient algorithms for discovering association rules
    • U. Fayyad, & R. Uthurusamy. Menlo Park, CA: AAAI Press
    • Mannila H., Toivonen H., Verkamo I. Efficient algorithms for discovering association rules. Fayyad U., Uthurusamy R. Knowledge Discovery in Databases. 1994;181-192 AAAI Press, Menlo Park, CA.
    • (1994) Knowledge Discovery in Databases , pp. 181-192
    • Mannila, H.1    Toivonen, H.2    Verkamo, I.3
  • 46
    • 0029700154 scopus 로고    scopus 로고
    • Non-linear mathematical interpretation of the oncological data
    • Pecen L., Eben K. Non-linear mathematical interpretation of the oncological data. Neural Network World. 6:1996;683-690.
    • (1996) Neural Network World , vol.6 , pp. 683-690
    • Pecen, L.1    Eben, K.2
  • 49
    • 0003203117 scopus 로고
    • A further note on inductive generalization
    • Plotkin G.D. A further note on inductive generalization. Mach. Intell. 6:1971;101-124.
    • (1971) Mach. Intell. , vol.6 , pp. 101-124
    • Plotkin, G.D.1
  • 51
    • 0012406918 scopus 로고
    • Complexity in mechanizing hypothesis formation
    • Pudlák P., Springsteel F. Complexity in mechanizing hypothesis formation. Theoret. Comput. Sci. 8:1979;203-225.
    • (1979) Theoret. Comput. Sci. , vol.8 , pp. 203-225
    • Pudlák, P.1    Springsteel, F.2
  • 53
    • 0012440227 scopus 로고    scopus 로고
    • Logical calculi for knowledge discovery in databases
    • Principles of Data Mining and Knowledge Discovery Komarowski, Zytkov. Berlin: Springer
    • Rauch J. Logical calculi for knowledge discovery in databases. Zytkov Komarowski, Principles of Data Mining and Knowledge Discovery. Lecture Notes in AL. Vol. 1263:1997;Springer, Berlin.
    • (1997) Lecture Notes in AL , vol.1263
    • Rauch, J.1
  • 54
    • 84947760031 scopus 로고    scopus 로고
    • Classes of four-fold table quantifiers
    • Quafafou, & Zytkov. Berlin: Springer
    • Rauch J. Classes of four-fold table quantifiers. Quafafou, Zytkov Principles of Data Mining and Knowledge Discovery. 1998;203-210 Springer, Berlin.
    • (1998) Principles of Data Mining and Knowledge Discovery , pp. 203-210
    • Rauch, J.1
  • 59
    • 0027035668 scopus 로고
    • On a semantics for neural networks based on fuzzy quantifiers
    • Yager R. On a semantics for neural networks based on fuzzy quantifiers. Internat. J. Intell. Systems. 7:1992;765-786.
    • (1992) Internat. J. Intell. Systems , vol.7 , pp. 765-786
    • Yager, R.1
  • 60
    • 0002893645 scopus 로고    scopus 로고
    • What is soft computing?
    • Editorial
    • Zadeh L.A. What is soft computing? (Editorial) Soft Comput. 1:1997;1.
    • (1997) Soft Comput. , vol.1 , pp. 1
    • Zadeh, L.A.1
  • 62
    • 0002598545 scopus 로고    scopus 로고
    • From contingency tables to various forms of knowledge in databases
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy. Menlo Park, CA: AAAI Press
    • Zembowicz R., Zytkov J. From contingency tables to various forms of knowledge in databases. Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining. 1996;329-352 AAAI Press, Menlo Park, CA.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 329-352
    • Zembowicz, R.1    Zytkov, J.2
  • 64
    • 0031170172 scopus 로고    scopus 로고
    • Contingency tables as the foundation for concepts, concept hierarchies and rules: The 49er system approach
    • Zytkov J., Zembowicz R. Contingency tables as the foundation for concepts, concept hierarchies and rules: the 49er system approach. Fund. Inform. 30:1997;383-399.
    • (1997) Fund. Inform. , vol.30 , pp. 383-399
    • Zytkov, J.1    Zembowicz, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.