메뉴 건너뛰기




Volumn 41, Issue 3, 2005, Pages 297-314

Extraction of fuzzy logic rules from data by means of artificial neural networks

Author keywords

Ukasiewicz logic; Artificial neural networks; Disjunctive normal form; Fuzzy logic; Knowledge extraction from data

Indexed keywords


EID: 25444464640     PISSN: 00235954     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (56)
  • 3
    • 0032931822 scopus 로고    scopus 로고
    • Template-based procedures for neural network interpretation
    • J. A. Alexander and M. C. Mozer: Template-based procedures for neural network interpretation. Neural Networks 12 (1999), 479-498.
    • (1999) Neural Networks , vol.12 , pp. 479-498
    • Alexander, J.A.1    Mozer, M.C.2
  • 5
    • 0034487156 scopus 로고    scopus 로고
    • An algorithm for the automatic generation of logical formula representing a control law
    • P. Amato and M. Porto: An algorithm for the automatic generation of logical formula representing a control law. Neural Network World 10 (2000), 777-786.
    • (2000) Neural Network World , vol.10 , pp. 777-786
    • Amato, P.1    Porto, M.2
  • 6
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificical neural networks
    • R. Andrews, J. Diederich, and A. B. Tickle: Survey and critique of techniques for extracting rules from trained artificical neural networks. Knowledge-based Systems 8 (1995), 378-389.
    • (1995) Knowledge-based Systems , vol.8 , pp. 378-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 9
    • 0034235548 scopus 로고    scopus 로고
    • Using mixture principal component analysis networks to extract fuzzy rules from data
    • J. Chen and J. Liu: Using mixture principal component analysis networks to extract fuzzy rules from data. Indust. Engrg. Chemistry Research 39 (2000), 2355-2367.
    • (2000) Indust. Engrg. Chemistry Research , vol.39 , pp. 2355-2367
    • Chen, J.1    Liu, J.2
  • 11
    • 0035127989 scopus 로고    scopus 로고
    • Symbolic knowledge extraction from artificial neural networks: A sound approach
    • A.S. d'Avila Garcez, K. Broda, and D.M. Gabbay: Symbolic knowledge extraction from artificial neural networks: A sound approach. Artificial Intelligence 125 (2001), 155-207.
    • (2001) Artificial Intelligence , vol.125 , pp. 155-207
    • D'Avila Garcez, A.S.1    Broda, K.2    Gabbay, D.M.3
  • 15
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • W. Duch, R. Adamczak, and K. Grabczewski: A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Trans. Neural Networks 11 (2000), 277-306.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 18
    • 0035606240 scopus 로고    scopus 로고
    • The ŁΠ and ŁΠ1/2 logics: Two complete fuzzy systems joiningŁukasiewicz and product logic
    • F. Esteva, L. Godo, and F. Montagna: The ŁΠ and ŁΠ1/ 2 logics: Two complete fuzzy systems joiningŁukasiewicz and product logic. Arch. Math. Logic 40 (2001), 39-67.
    • (2001) Arch. Math. Logic , vol.40 , pp. 39-67
    • Esteva, F.1    Godo, L.2    Montagna, F.3
  • 20
    • 0033242063 scopus 로고    scopus 로고
    • Learning fuzzy rules from data
    • G.D. Finn: Learning fuzzy rules from data. Neural Computing Appl. 8 (1999), 9-24.
    • (1999) Neural Computing Appl. , vol.8 , pp. 9-24
    • Finn, G.D.1
  • 25
    • 0031140465 scopus 로고    scopus 로고
    • Acquiring rule sets as a product of learning in a logical neural architecture
    • M. J. Healy and T. P. Caudell: Acquiring rule sets as a product of learning in a logical neural architecture. IEEE Trans. Neural Networks 8 (1997), 461-474.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 461-474
    • Healy, M.J.1    Caudell, T.P.2
  • 26
    • 84949774169 scopus 로고    scopus 로고
    • Extraction of logical rules from data by means of piecewise-linear neural networks
    • Springer-Verlag, Berlin
    • M. Holeña: Extraction of logical rules from data by means of piecewise-linear neural networks. In: Proc. 5th Internat. Conference on Discovery Science, Springer-Verlag, Berlin 2002, pp. 192-205.
    • (2002) Proc. 5th Internat. Conference on Discovery Science , pp. 192-205
    • Holeña, M.1
  • 28
    • 0038487623 scopus 로고    scopus 로고
    • Feedforward neural networks in catalysis. A tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction
    • M. Holeňa and M. Baerns: Feedforward neural networks in catalysis. A tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction. Catalysis Today 81 (2003), 485-494.
    • (2003) Catalysis Today , vol.81 , pp. 485-494
    • Holeňa, M.1    Baerns, M.2
  • 29
  • 30
    • 0034551785 scopus 로고    scopus 로고
    • Rule extraction by successive regularization
    • M. Ishikawa: Rule extraction by successive regularization. Neural Networks 13 (2000), 1171-1183.
    • (2000) Neural Networks , vol.13 , pp. 1171-1183
    • Ishikawa, M.1
  • 32
    • 0032812327 scopus 로고    scopus 로고
    • Rule-extraction by backpropagation of polyhedra
    • F. Maire: Rule-extraction by backpropagation of polyhedra. Neural Networks 12 (1999), 717-725.
    • (1999) Neural Networks , vol.12 , pp. 717-725
    • Maire, F.1
  • 33
    • 0002141730 scopus 로고
    • A theorem about infinite-valued sentential logic
    • R. McNaughton: A theorem about infinite-valued sentential logic. J. Symbolic Logic 16 (1951), 1-13.
    • (1951) J. Symbolic Logic , vol.16 , pp. 1-13
    • McNaughton, R.1
  • 34
    • 0031274113 scopus 로고    scopus 로고
    • Knowledge-based fuzzy MLP for classification and rule generation
    • S. Mitra, R. K. De, and S. K. Pal: Knowledge-based fuzzy MLP for classification and rule generation. IEEE Trans. Neural Networks 8 (1997), 1338-1350.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1338-1350
    • Mitra, S.1    De, R.K.2    Pal, S.K.3
  • 35
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • S. Mitra and Y. Hayashi: Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Trans. Neural Networks 11 (2000), 748-768.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 37
    • 0001230644 scopus 로고
    • A constructive proof of McNaughton's theorem in infinite-valued logic
    • D. Mundici: A constructive proof of McNaughton's theorem in infinite-valued logic. J. Symbolic Logic 59 (1994), 596-602.
    • (1994) J. Symbolic Logic , vol.59 , pp. 596-602
    • Mundici, D.1
  • 38
    • 0030085145 scopus 로고    scopus 로고
    • Reorganizing knowledge in neural networks: An exploratory mechanism for neural networks in data classification problems
    • H. Narazaki, T. Watanabe, and M. Yamamoto: Reorganizing knowledge in neural networks: An exploratory mechanism for neural networks in data classification problems. IEEE Trans. Systems Man Cybernet. 26 (1996), 107-117.
    • (1996) IEEE Trans. Systems Man Cybernet. , vol.26 , pp. 107-117
    • Narazaki, H.1    Watanabe, T.2    Yamamoto, M.3
  • 42
    • 0035718778 scopus 로고    scopus 로고
    • Neural nets and normal forms from fuzzy logic point of view
    • Institute for Research and Applications of Fuzzy Modelling
    • I. Perfilieva: Neural nets and normal forms from fuzzy logic point of view. Technical Report, Institute for Research and Applications of Fuzzy Modelling, 2001.
    • (2001) Technical Report
    • Perfilieva, I.1
  • 43
    • 0035900862 scopus 로고    scopus 로고
    • Normal forms for fuzzy logic functions and their approximation ability
    • I. Perfilieva: Normal forms for fuzzy logic functions and their approximation ability. Fuzzy Sets and Systems 124 (2001), 371-384.
    • (2001) Fuzzy Sets and Systems , vol.124 , pp. 371-384
    • Perfilieva, I.1
  • 44
    • 0038584596 scopus 로고    scopus 로고
    • Logical approximaion
    • I. Perfilieva: Logical approximaion. Soft Computing 7 (2003), 73-78.
    • (2003) Soft Computing , vol.7 , pp. 73-78
    • Perfilieva, I.1
  • 45
    • 1342306692 scopus 로고    scopus 로고
    • Normal forms in BL-algerbra and their contribution fo universal approximation of functions
    • I. Perfilieva: Normal forms in BL-algerbra and their contribution fo universal approximation of functions. Fuzzy Sets and Systems 143 (2004), 111-127.
    • (2004) Fuzzy Sets and Systems , vol.143 , pp. 111-127
    • Perfilieva, I.1
  • 46
    • 25444440309 scopus 로고    scopus 로고
    • Normal forms in BL and ŁΠ algebras of functions
    • I. Perfilieva: Normal forms in BL and ŁΠ algebras of functions. Soft Computing 8 (2004), 291-298.
    • (2004) Soft Computing , vol.8 , pp. 291-298
    • Perfilieva, I.1
  • 47
    • 0036905571 scopus 로고    scopus 로고
    • A new universal approximation result for fuzzy systems, which reflects CNF-DNF duality
    • I. Perfilieva and V. Kreinovich: A new universal approximation result for fuzzy systems, which reflects CNF-DNF duality. Internat. J. Intelligent Systems 17 (2002), 1121-1130.
    • (2002) Internat. J. Intelligent Systems , vol.17 , pp. 1121-1130
    • Perfilieva, I.1    Kreinovich, V.2
  • 50
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden unit splitting
    • R. Setiono: Extracting rules from neural networks by pruning and hidden unit splitting. Neural Computation 9 (1997), 05-225.
    • (1997) Neural Computation , vol.9 , pp. 05-225
    • Setiono, R.1
  • 51
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks
    • A.B. Tickle, R. Andrews, M. Golea, and J. Diederich: The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks. IEEE Trans. Neural Networks 9 (1998), 1057-1068.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 52
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • G. G. Towell and J. W. Shavlik: Extracting refined rules from knowledge-based neural networks. Mach. Learning 13 (1993), 71-101.
    • (1993) Mach. Learning , vol.13 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 54
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • H. Tsukimoto: Extracting rules from trained neural networks. IEEE Trans. Neural Networks 11 (2000), 333-389.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 333-389
    • Tsukimoto, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.