메뉴 건너뛰기




Volumn 4724 LNAI, Issue , 2007, Pages 430-442

Measures of ruleset quality capable to represent uncertain validity

Author keywords

Boolean rules; Classification; Fuzzy rules; Observational logic; Quality measures; ROC curves; Rules extraction from data

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA ACQUISITION; UNCERTAIN SYSTEMS;

EID: 38049138864     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-75256-1_39     Document Type: Conference Paper
Times cited : (1)

References (42)
  • 2
    • 14844361816 scopus 로고    scopus 로고
    • ROC 'n' rule learning - towards a better understanding of covering algorithms
    • Fürnkranz, J., Flach, P.: ROC 'n' rule learning - towards a better understanding of covering algorithms. Machine Learning 58, 39-77 (2005)
    • (2005) Machine Learning , vol.58 , pp. 39-77
    • Fürnkranz, J.1    Flach, P.2
  • 3
    • 0034156963 scopus 로고    scopus 로고
    • An adjustable description quality measure for pattern discovery using the AQ methodology
    • Kaufman, K., Michalski, R.: An adjustable description quality measure for pattern discovery using the AQ methodology. Journal of Intelligent Information Systems 14, 199-216 (2000)
    • (2000) Journal of Intelligent Information Systems , vol.14 , pp. 199-216
    • Kaufman, K.1    Michalski, R.2
  • 4
    • 28544452631 scopus 로고    scopus 로고
    • A survey of interestingness measures for knowledge discovery
    • McGarry, K.: A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review 20, 39-61 (2005)
    • (2005) Knowledge Engineering Review , vol.20 , pp. 39-61
    • McGarry, K.1
  • 5
    • 33748458842 scopus 로고    scopus 로고
    • Dubois, D., Hüllermeier, Prade, H.: A systematic approach to the assessment of fuzzy association rules. Data Mining and Knowledge Discovery 13, 167-192 (2006)
    • Dubois, D., Hüllermeier, Prade, H.: A systematic approach to the assessment of fuzzy association rules. Data Mining and Knowledge Discovery 13, 167-192 (2006)
  • 6
    • 33846463460 scopus 로고    scopus 로고
    • Choosing the right lens: Finding what is interesting in data mining
    • Guillet, F, Hamilton, H, eds, Springer, Heidelberg
    • Geng, L., Hamilton, H.: Choosing the right lens: Finding what is interesting in data mining. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 3-24. Springer, Heidelberg (2007)
    • (2007) Quality Measures in Data Mining , pp. 3-24
    • Geng, L.1    Hamilton, H.2
  • 7
    • 33846419833 scopus 로고    scopus 로고
    • Association rule interestingness: Measure and statistical validation
    • Guillet, F, Hamilton, H, eds, Springer, Heidelberg
    • Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: Measure and statistical validation. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 251-275. Springer, Heidelberg (2007)
    • (2007) Quality Measures in Data Mining , pp. 251-275
    • Lallich, S.1    Teytaud, O.2    Prudhomme, E.3
  • 8
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences. mining contrast sets
    • Bay, S., Pazzani, M.: Detecting group differences. mining contrast sets. Data Mining and Knowledge Discovery 5, 213-246 (2001)
    • (2001) Data Mining and Knowledge Discovery , vol.5 , pp. 213-246
    • Bay, S.1    Pazzani, M.2
  • 9
    • 33846422016 scopus 로고    scopus 로고
    • Statistical methodologies for mining potentially interesting contrast sets
    • Guillet, F, Hamilton, H, eds, Springer, Heidelberg
    • Hilderman, R., Peckham, T.: Statistical methodologies for mining potentially interesting contrast sets. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 153-177. Springer, Heidelberg (2007)
    • (2007) Quality Measures in Data Mining , pp. 153-177
    • Hilderman, R.1    Peckham, T.2
  • 10
    • 77950484598 scopus 로고    scopus 로고
    • Une mesure probabiliste contextuelle discriminante de qualite des règles d'association
    • Hermes Science Publications, Lavoisier
    • Lerman, L., Azè, J.: Une mesure probabiliste contextuelle discriminante de qualite des règles d'association. In: EGC 2003: Extraction et Gestion des Connaissances, pp. 247-263. Hermes Science Publications, Lavoisier (2003)
    • (2003) EGC 2003: Extraction et Gestion des Connaissances , pp. 247-263
    • Lerman, L.1    Azè, J.2
  • 11
    • 33846447487 scopus 로고    scopus 로고
    • Association rule interestingness meaures: Experimental and theoretical studies
    • Guillet, F, Hamilton, H, eds, Springer, Heidelberg
    • Lenca, P., Vaiilant, B., Meyer, P., Lalich, S.: Association rule interestingness meaures: Experimental and theoretical studies. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 51-76. Springer, Heidelberg (2007)
    • (2007) Quality Measures in Data Mining , pp. 51-76
    • Lenca, P.1    Vaiilant, B.2    Meyer, P.3    Lalich, S.4
  • 16
    • 0019063015 scopus 로고
    • Knowledge acquisition through conceptual clustering: A theoretical framework and algorithm for partitioning data into conjunctive concepts
    • Michalski, R.: Knowledge acquisition through conceptual clustering: A theoretical framework and algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Information Systems 4, 219-243 (1980)
    • (1980) International Journal of Policy Analysis and Information Systems , vol.4 , pp. 219-243
    • Michalski, R.1
  • 18
    • 85015191605 scopus 로고
    • Rule induction with CN2: Some recent improvements
    • Kodratoff, Y, ed, Machine Learning, EWSL-91, Springer, Heidelberg
    • Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In: Kodratoff, Y. (ed.) Machine Learning - EWSL-91. LNCS, vol. 482, pp. 151-163. Springer, Heidelberg (1991)
    • (1991) LNCS , vol.482 , pp. 151-163
    • Clark, P.1    Boswell, R.2
  • 23
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang, J., Sun, C.: Neuro-fuzzy modeling and control. The Proceedings of the IEEE 83, 378-406 (1995)
    • (1995) The Proceedings of the IEEE , vol.83 , pp. 378-406
    • Jang, J.1    Sun, C.2
  • 24
    • 0032114652 scopus 로고    scopus 로고
    • NEFCLASS-X: A neuro-fuzzy tool to build readable fuzzy classifiers
    • Nauck, D., Kruse, R.: NEFCLASS-X: A neuro-fuzzy tool to build readable fuzzy classifiers. BT Technology Journal 3, 180-192 (1998)
    • (1998) BT Technology Journal , vol.3 , pp. 180-192
    • Nauck, D.1    Kruse, R.2
  • 26
    • 0001181941 scopus 로고    scopus 로고
    • Fuzzy hypotheses for Guha implications
    • Holena, M.: Fuzzy hypotheses for Guha implications. Fuzzy Sets and Systems 98, 101-125 (1998)
    • (1998) Fuzzy Sets and Systems , vol.98 , pp. 101-125
    • Holena, M.1
  • 27
    • 2942560785 scopus 로고    scopus 로고
    • Fuzzy hypotheses testing in the framework of fuzzy logic
    • Holeňa, M.: Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets and Systems 145, 229-252 (2004)
    • (2004) Fuzzy Sets and Systems , vol.145 , pp. 229-252
    • Holeňa, M.1
  • 30
    • 38049171395 scopus 로고    scopus 로고
    • Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1992)
    • Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1992)
  • 32
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • Duch, W., Adamczak, R., Grabczewski, K.: A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 11, 277-306 (2000)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 33
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Tsukimoto, H.: Extracting rules from trained neural networks. IEEE Transactions on Neural Networks 11, 333-389 (2000)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 333-389
    • Tsukimoto, H.1
  • 34
    • 33750596411 scopus 로고    scopus 로고
    • Piecewise-linear neural networks and their relationship to rule extraction from data
    • Holeňa, M.: Piecewise-linear neural networks and their relationship to rule extraction from data. Neural Computation 18, 2813-2853 (2006)
    • (2006) Neural Computation , vol.18 , pp. 2813-2853
    • Holeňa, M.1
  • 35
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks
    • Tickle, A., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks. IEEE Transactions on Neural Networks 9, 1057-1068 (1998)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 1057-1068
    • Tickle, A.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 36
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transactions on Neural Networks 11, 748-768 (2000)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 37
    • 9144229595 scopus 로고    scopus 로고
    • Academic KDD project LISp-miner
    • Abraham, A, Franke, K, Koppen, K, eds, Springer, Heidelberg
    • Šimunek, M.: Academic KDD project LISp-miner. In: Abraham, A., Franke, K., Koppen, K. (eds.) Advances in Soft Computing - Systems Desing and Applications, pp. 263-272. Springer, Heidelberg (2003)
    • (2003) Advances in Soft Computing - Systems Desing and Applications , pp. 263-272
    • Šimunek, M.1
  • 38
    • 0037467664 scopus 로고    scopus 로고
    • Formal logics of discovery and hypothesis formation by machine
    • Hájek, P., Holeňa, M.: Formal logics of discovery and hypothesis formation by machine. Theoretical Computer Science 292, 345-357 (2003)
    • (2003) Theoretical Computer Science , vol.292 , pp. 345-357
    • Hájek, P.1    Holeňa, M.2
  • 39
    • 25444464640 scopus 로고    scopus 로고
    • Extraction of fuzzy logic rules from data by means of artificial neural networks
    • Holeňa, M.: Extraction of fuzzy logic rules from data by means of artificial neural networks. Kybernetika 41, 297-314 (2005)
    • (2005) Kybernetika , vol.41 , pp. 297-314
    • Holeňa, M.1
  • 41
    • 38049153871 scopus 로고    scopus 로고
    • Neural networks for extraction of fuzzy logic rules with application to EEG data
    • Ribeiro, B, Albrecht, R, Dobnikar, A, eds, Springer, Heidelberg
    • Holena, M.: Neural networks for extraction of fuzzy logic rules with application to EEG data. In: Ribeiro, B., Albrecht, R., Dobnikar, A. (eds.) Adaptive and Natural Computing Algorithms, pp. 369-372. Springer, Heidelberg (2005)
    • (2005) Adaptive and Natural Computing Algorithms , pp. 369-372
    • Holena, M.1
  • 42
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179-188 (1936)
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.