-
2
-
-
14844361816
-
ROC 'n' rule learning - towards a better understanding of covering algorithms
-
Fürnkranz, J., Flach, P.: ROC 'n' rule learning - towards a better understanding of covering algorithms. Machine Learning 58, 39-77 (2005)
-
(2005)
Machine Learning
, vol.58
, pp. 39-77
-
-
Fürnkranz, J.1
Flach, P.2
-
3
-
-
0034156963
-
An adjustable description quality measure for pattern discovery using the AQ methodology
-
Kaufman, K., Michalski, R.: An adjustable description quality measure for pattern discovery using the AQ methodology. Journal of Intelligent Information Systems 14, 199-216 (2000)
-
(2000)
Journal of Intelligent Information Systems
, vol.14
, pp. 199-216
-
-
Kaufman, K.1
Michalski, R.2
-
4
-
-
28544452631
-
A survey of interestingness measures for knowledge discovery
-
McGarry, K.: A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review 20, 39-61 (2005)
-
(2005)
Knowledge Engineering Review
, vol.20
, pp. 39-61
-
-
McGarry, K.1
-
5
-
-
33748458842
-
-
Dubois, D., Hüllermeier, Prade, H.: A systematic approach to the assessment of fuzzy association rules. Data Mining and Knowledge Discovery 13, 167-192 (2006)
-
Dubois, D., Hüllermeier, Prade, H.: A systematic approach to the assessment of fuzzy association rules. Data Mining and Knowledge Discovery 13, 167-192 (2006)
-
-
-
-
6
-
-
33846463460
-
Choosing the right lens: Finding what is interesting in data mining
-
Guillet, F, Hamilton, H, eds, Springer, Heidelberg
-
Geng, L., Hamilton, H.: Choosing the right lens: Finding what is interesting in data mining. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 3-24. Springer, Heidelberg (2007)
-
(2007)
Quality Measures in Data Mining
, pp. 3-24
-
-
Geng, L.1
Hamilton, H.2
-
7
-
-
33846419833
-
Association rule interestingness: Measure and statistical validation
-
Guillet, F, Hamilton, H, eds, Springer, Heidelberg
-
Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: Measure and statistical validation. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 251-275. Springer, Heidelberg (2007)
-
(2007)
Quality Measures in Data Mining
, pp. 251-275
-
-
Lallich, S.1
Teytaud, O.2
Prudhomme, E.3
-
8
-
-
23044527560
-
Detecting group differences. mining contrast sets
-
Bay, S., Pazzani, M.: Detecting group differences. mining contrast sets. Data Mining and Knowledge Discovery 5, 213-246 (2001)
-
(2001)
Data Mining and Knowledge Discovery
, vol.5
, pp. 213-246
-
-
Bay, S.1
Pazzani, M.2
-
9
-
-
33846422016
-
Statistical methodologies for mining potentially interesting contrast sets
-
Guillet, F, Hamilton, H, eds, Springer, Heidelberg
-
Hilderman, R., Peckham, T.: Statistical methodologies for mining potentially interesting contrast sets. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 153-177. Springer, Heidelberg (2007)
-
(2007)
Quality Measures in Data Mining
, pp. 153-177
-
-
Hilderman, R.1
Peckham, T.2
-
10
-
-
77950484598
-
Une mesure probabiliste contextuelle discriminante de qualite des règles d'association
-
Hermes Science Publications, Lavoisier
-
Lerman, L., Azè, J.: Une mesure probabiliste contextuelle discriminante de qualite des règles d'association. In: EGC 2003: Extraction et Gestion des Connaissances, pp. 247-263. Hermes Science Publications, Lavoisier (2003)
-
(2003)
EGC 2003: Extraction et Gestion des Connaissances
, pp. 247-263
-
-
Lerman, L.1
Azè, J.2
-
11
-
-
33846447487
-
Association rule interestingness meaures: Experimental and theoretical studies
-
Guillet, F, Hamilton, H, eds, Springer, Heidelberg
-
Lenca, P., Vaiilant, B., Meyer, P., Lalich, S.: Association rule interestingness meaures: Experimental and theoretical studies. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 51-76. Springer, Heidelberg (2007)
-
(2007)
Quality Measures in Data Mining
, pp. 51-76
-
-
Lenca, P.1
Vaiilant, B.2
Meyer, P.3
Lalich, S.4
-
13
-
-
0001371923
-
Fast discovery of association rules
-
AAAI Press, Menlo Park
-
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307-328. AAAI Press, Menlo Park (1996)
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.5
-
14
-
-
21944439686
-
New parallel algorithms for fast discovery of association rules
-
Zaki, M., Parathasarathy, S., Ogihara, M., Li, W.: New parallel algorithms for fast discovery of association rules. Data Mining and Knowledge Discovery 1, 343-373 (1997)
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 343-373
-
-
Zaki, M.1
Parathasarathy, S.2
Ogihara, M.3
Li, W.4
-
15
-
-
0034133205
-
Quantifiable data mining using ration rules
-
Korn, F., Labrinidis, A., Kotidis, Y., Faloutsos, C.: Quantifiable data mining using ration rules. VLDB Journal 8, 254-266 (2000)
-
(2000)
VLDB Journal
, vol.8
, pp. 254-266
-
-
Korn, F.1
Labrinidis, A.2
Kotidis, Y.3
Faloutsos, C.4
-
16
-
-
0019063015
-
Knowledge acquisition through conceptual clustering: A theoretical framework and algorithm for partitioning data into conjunctive concepts
-
Michalski, R.: Knowledge acquisition through conceptual clustering: A theoretical framework and algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Information Systems 4, 219-243 (1980)
-
(1980)
International Journal of Policy Analysis and Information Systems
, vol.4
, pp. 219-243
-
-
Michalski, R.1
-
18
-
-
85015191605
-
Rule induction with CN2: Some recent improvements
-
Kodratoff, Y, ed, Machine Learning, EWSL-91, Springer, Heidelberg
-
Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In: Kodratoff, Y. (ed.) Machine Learning - EWSL-91. LNCS, vol. 482, pp. 151-163. Springer, Heidelberg (1991)
-
(1991)
LNCS
, vol.482
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
-
23
-
-
0029273384
-
Neuro-fuzzy modeling and control
-
Jang, J., Sun, C.: Neuro-fuzzy modeling and control. The Proceedings of the IEEE 83, 378-406 (1995)
-
(1995)
The Proceedings of the IEEE
, vol.83
, pp. 378-406
-
-
Jang, J.1
Sun, C.2
-
24
-
-
0032114652
-
NEFCLASS-X: A neuro-fuzzy tool to build readable fuzzy classifiers
-
Nauck, D., Kruse, R.: NEFCLASS-X: A neuro-fuzzy tool to build readable fuzzy classifiers. BT Technology Journal 3, 180-192 (1998)
-
(1998)
BT Technology Journal
, vol.3
, pp. 180-192
-
-
Nauck, D.1
Kruse, R.2
-
26
-
-
0001181941
-
Fuzzy hypotheses for Guha implications
-
Holena, M.: Fuzzy hypotheses for Guha implications. Fuzzy Sets and Systems 98, 101-125 (1998)
-
(1998)
Fuzzy Sets and Systems
, vol.98
, pp. 101-125
-
-
Holena, M.1
-
27
-
-
2942560785
-
Fuzzy hypotheses testing in the framework of fuzzy logic
-
Holeňa, M.: Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets and Systems 145, 229-252 (2004)
-
(2004)
Fuzzy Sets and Systems
, vol.145
, pp. 229-252
-
-
Holeňa, M.1
-
28
-
-
40049106001
-
Mining pure linguistic associations from numerical data
-
to appear
-
Novák, V., Perfilieva, I., Dvořák, A., Chen, C., Wei, Q., Yan, P.: Mining pure linguistic associations from numerical data. International Journal of Approximate Reasoning (to appear)
-
International Journal of Approximate Reasoning
-
-
Novák, V.1
Perfilieva, I.2
Dvořák, A.3
Chen, C.4
Wei, Q.5
Yan, P.6
-
29
-
-
0003802343
-
-
Wadsworth, Belmont
-
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth, Belmont (1984)
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
30
-
-
38049171395
-
-
Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1992)
-
Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1992)
-
-
-
-
32
-
-
0035271419
-
A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
-
Duch, W., Adamczak, R., Grabczewski, K.: A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 11, 277-306 (2000)
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 277-306
-
-
Duch, W.1
Adamczak, R.2
Grabczewski, K.3
-
33
-
-
0033742671
-
Extracting rules from trained neural networks
-
Tsukimoto, H.: Extracting rules from trained neural networks. IEEE Transactions on Neural Networks 11, 333-389 (2000)
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 333-389
-
-
Tsukimoto, H.1
-
34
-
-
33750596411
-
Piecewise-linear neural networks and their relationship to rule extraction from data
-
Holeňa, M.: Piecewise-linear neural networks and their relationship to rule extraction from data. Neural Computation 18, 2813-2853 (2006)
-
(2006)
Neural Computation
, vol.18
, pp. 2813-2853
-
-
Holeňa, M.1
-
35
-
-
0032208720
-
The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks
-
Tickle, A., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks. IEEE Transactions on Neural Networks 9, 1057-1068 (1998)
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, pp. 1057-1068
-
-
Tickle, A.1
Andrews, R.2
Golea, M.3
Diederich, J.4
-
36
-
-
0034187785
-
Neuro-fuzzy rule generation: Survey in soft computing framework
-
Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transactions on Neural Networks 11, 748-768 (2000)
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 748-768
-
-
Mitra, S.1
Hayashi, Y.2
-
37
-
-
9144229595
-
Academic KDD project LISp-miner
-
Abraham, A, Franke, K, Koppen, K, eds, Springer, Heidelberg
-
Šimunek, M.: Academic KDD project LISp-miner. In: Abraham, A., Franke, K., Koppen, K. (eds.) Advances in Soft Computing - Systems Desing and Applications, pp. 263-272. Springer, Heidelberg (2003)
-
(2003)
Advances in Soft Computing - Systems Desing and Applications
, pp. 263-272
-
-
Šimunek, M.1
-
38
-
-
0037467664
-
Formal logics of discovery and hypothesis formation by machine
-
Hájek, P., Holeňa, M.: Formal logics of discovery and hypothesis formation by machine. Theoretical Computer Science 292, 345-357 (2003)
-
(2003)
Theoretical Computer Science
, vol.292
, pp. 345-357
-
-
Hájek, P.1
Holeňa, M.2
-
39
-
-
25444464640
-
Extraction of fuzzy logic rules from data by means of artificial neural networks
-
Holeňa, M.: Extraction of fuzzy logic rules from data by means of artificial neural networks. Kybernetika 41, 297-314 (2005)
-
(2005)
Kybernetika
, vol.41
, pp. 297-314
-
-
Holeňa, M.1
-
41
-
-
38049153871
-
Neural networks for extraction of fuzzy logic rules with application to EEG data
-
Ribeiro, B, Albrecht, R, Dobnikar, A, eds, Springer, Heidelberg
-
Holena, M.: Neural networks for extraction of fuzzy logic rules with application to EEG data. In: Ribeiro, B., Albrecht, R., Dobnikar, A. (eds.) Adaptive and Natural Computing Algorithms, pp. 369-372. Springer, Heidelberg (2005)
-
(2005)
Adaptive and Natural Computing Algorithms
, pp. 369-372
-
-
Holena, M.1
-
42
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179-188 (1936)
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.1
|