-
1
-
-
49449090221
-
-
Schoch, R. B.; Han, J. Y.; Renaud, P. Rev. Mod. Phys. 2008, 80 (3), 839-883.
-
(2008)
Rev. Mod. Phys
, vol.80
, Issue.3
, pp. 839-883
-
-
Schoch, R.B.1
Han, J.Y.2
Renaud, P.3
-
2
-
-
0035902938
-
-
Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001, 293 (5533), 1289-1292.
-
(2001)
Science
, vol.293
, Issue.5533
, pp. 1289-1292
-
-
Cui, Y.1
Wei, Q.Q.2
Park, H.K.3
Lieber, C.M.4
-
4
-
-
4644230429
-
-
Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (39), 14017-14022.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A
, vol.101
, Issue.39
, pp. 14017-14022
-
-
Patolsky, F.1
Zheng, G.F.2
Hayden, O.3
Lakadamyali, M.4
Zhuang, X.W.5
Lieber, C.M.6
-
5
-
-
33847729764
-
-
Patolsky, F.; Zheng, G.; Lieber, C. M. Nanomedicine 2006, 1 (1), 51-65.
-
(2006)
Nanomedicine
, vol.1
, Issue.1
, pp. 51-65
-
-
Patolsky, F.1
Zheng, G.2
Lieber, C.M.3
-
7
-
-
33846695595
-
-
Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner- Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Nature 2007, 445 (7127), 519-522.
-
(2007)
Nature
, vol.445
, Issue.7127
, pp. 519-522
-
-
Stern, E.1
Klemic, J.F.2
Routenberg, D.A.3
Wyrembak, P.N.4
Turner- Evans, D.B.5
Hamilton, A.D.6
LaVan, D.A.7
Fahmy, T.M.8
Reed, M.A.9
-
8
-
-
34248663217
-
-
Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nat. Protoc. 2006, 1 (4), 1711-1724.
-
(2006)
Nat. Protoc
, vol.1
, Issue.4
, pp. 1711-1724
-
-
Patolsky, F.1
Zheng, G.F.2
Lieber, C.M.3
-
10
-
-
41849151140
-
-
Squires, T. M.; Messinger, R. J.; Manalis, S. R. Nat. Biotechnol. 2008, 26 (4), 417-426.
-
(2008)
Nat. Biotechnol
, vol.26
, Issue.4
, pp. 417-426
-
-
Squires, T.M.1
Messinger, R.J.2
Manalis, S.R.3
-
12
-
-
35648974712
-
-
Shinwari, M. W.; Deen, M. J.; Landheer, D. Micmelecton. Reliab. 2007, 47 (12), 2025-2057.
-
(2007)
Micmelecton. Reliab
, vol.47
, Issue.12
, pp. 2025-2057
-
-
Shinwari, M.W.1
Deen, M.J.2
Landheer, D.3
-
13
-
-
34548429204
-
-
Minot, E. D.; Janssens, A. M.; Heller, I.; Heering, H. A.; Dekker, C.; Lemay, S. G. Appl. Phys. Lett. 2007, 91 (9), 093507.
-
(2007)
Appl. Phys. Lett
, vol.91
, Issue.9
, pp. 093507
-
-
Minot, E.D.1
Janssens, A.M.2
Heller, I.3
Heering, H.A.4
Dekker, C.5
Lemay, S.G.6
-
14
-
-
33244471087
-
-
Polk, B. J.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.; Gaitan, M. Sens. Actuators, B 2006, 114 (1), 239-247.
-
(2006)
Sens. Actuators, B
, vol.114
, Issue.1
, pp. 239-247
-
-
Polk, B.J.1
Stelzenmuller, A.2
Mijares, G.3
MacCrehan, W.4
Gaitan, M.5
-
16
-
-
0035831837
-
-
Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Appl. Phys. Lett. 2001, 78 (15), 2214-2216.
-
(2001)
Appl. Phys. Lett
, vol.78
, Issue.15
, pp. 2214-2216
-
-
Cui, Y.1
Lauhon, L.J.2
Gudiksen, M.S.3
Wang, J.F.4
Lieber, C.M.5
-
17
-
-
84868941215
-
-
3. The growth time was 15 min.
-
3. The growth time was 15 min.
-
-
-
-
18
-
-
66449121112
-
-
Devices were fabricated on degenerately doped silicon wafers with 500 nm thermally grown oxides. SiNWs suspended in an ethanol solution were deposited onto the silicon substrate, and the source and drain electrodes were defined by photolithography, metallization of Ti/Pd (2 nm/50 nm) by an electron beam evaporator, and lift-off. The devices were further passivated by 2 of SU-8 (Microchem Corp.) with a second photolithography step.
-
Devices were fabricated on degenerately doped silicon wafers with 500 nm thermally grown oxides. SiNWs suspended in an ethanol solution were deposited onto the silicon substrate, and the source and drain electrodes were defined by photolithography, metallization of Ti/Pd (2 nm/50 nm) by an electron beam evaporator, and lift-off. The devices were further passivated by 2 of SU-8 (Microchem Corp.) with a second photolithography step.
-
-
-
-
20
-
-
27144446682
-
-
van der Heyden, F. H. J.; Stein, D.; Dekker, C. Phys. Rev. Lett. 2005, 95 (11), 116104.
-
(2005)
Phys. Rev. Lett
, vol.95
, Issue.11
, pp. 116104
-
-
van der Heyden, F.H.J.1
Stein, D.2
Dekker, C.3
-
21
-
-
27744572153
-
-
Mansouri, A.; Scheuerman, C.; Bhattacharjee, S.; Kwok, D. Y.; Kostiuk, L. W. J. Colloid Interface Sci. 2005, 292 (2), 567-580.
-
(2005)
J. Colloid Interface Sci
, vol.292
, Issue.2
, pp. 567-580
-
-
Mansouri, A.1
Scheuerman, C.2
Bhattacharjee, S.3
Kwok, D.Y.4
Kostiuk, L.W.5
-
23
-
-
17444432637
-
-
Chun, M. S.; Lee, T. S.; Choi, N. W. J. Micromech. Microeng. 2005, 15 (4), 710-719.
-
(2005)
J. Micromech. Microeng
, vol.15
, Issue.4
, pp. 710-719
-
-
Chun, M.S.1
Lee, T.S.2
Choi, N.W.3
-
25
-
-
33846892545
-
-
Bourlon, B.; Wong, J.; Miko, C.; Forro, L.; Bockrath, M. Nat. Nanotechnol. 2007, 2 (2), 104-107.
-
(2007)
Nat. Nanotechnol
, vol.2
, Issue.2
, pp. 104-107
-
-
Bourlon, B.1
Wong, J.2
Miko, C.3
Forro, L.4
Bockrath, M.5
-
27
-
-
84868941218
-
-
-3).
-
-3).
-
-
-
-
28
-
-
61649123298
-
-
Cheng, Y.; Yun, C. S.; Strouse, G. F.; Zheng, J. P.; Yang, R. S.; Wang, Z. L. Nano Lett. 2008, 8 (12), 4179-4184.
-
(2008)
Nano Lett
, vol.8
, Issue.12
, pp. 4179-4184
-
-
Cheng, Y.1
Yun, C.S.2
Strouse, G.F.3
Zheng, J.P.4
Yang, R.S.5
Wang, Z.L.6
-
29
-
-
66449090719
-
-
Ethanol (CH3CH2OH) is an amphiprotic solvent that can accept and donate protons through autoprotolysis reaction [2CH 3CH2OH(aq) ↔ CH3CH2O, aq, CH3CH2OH2+(aq, see refs 30 and 31, Amphipro- tic solvents can also accept or donate protons if the system contains other proton donors/acceptors, such as the silica surface (Si-OH) or impurities like water (see refs 32 and 33, The existence of ions in ethanol is supported by the fact that the zeta potential of silica surface in ethanol was measured to be -72.6 mV (see ref 34, Moreover, streaming potential has been measured in ethanol and the reported streaming potential in ethanol was 2.4 times higher than that in water see ref 35
-
2+(aq)] (see refs 30 and 31). Amphipro- tic solvents can also accept or donate protons if the system contains other proton donors/acceptors, such as the silica surface (Si-OH) or impurities like water (see refs 32 and 33). The existence of ions in ethanol is supported by the fact that the zeta potential of silica surface in ethanol was measured to be -72.6 mV (see ref 34). Moreover, streaming potential has been measured in ethanol and the reported streaming potential in ethanol was 2.4 times higher than that in water (see ref 35).
-
-
-
-
31
-
-
36348936184
-
-
Kim, D.; Posner, J. D.; Santiago, J. G. Sens. Actuators, A 2008, 141 (1), 201-212.
-
(2008)
Sens. Actuators, A
, vol.141
, Issue.1
, pp. 201-212
-
-
Kim, D.1
Posner, J.D.2
Santiago, J.G.3
-
34
-
-
0001191539
-
-
Sep
-
Valko, I. E.; Siren, H.; Riekkola, M. L. J. Microcolumn Sep. 1999, 11 (3), 199-208.
-
(1999)
J. Microcolumn
, vol.11
, Issue.3
, pp. 199-208
-
-
Valko, I.E.1
Siren, H.2
Riekkola, M.L.3
|