-
4
-
-
66049114479
-
-
Brezzi F, Marini LD, Micheletti S, Pietra P, Sacco R, Wang S. Finite element and finite discretizations of drift-diffusion type fluid models for semiconductors. In Handbook of Numerical Analysis, XIII, Numerical Methods for Electrodynamic Problems. Elsevier Science, 2005.
-
Brezzi F, Marini LD, Micheletti S, Pietra P, Sacco R, Wang S. Finite element and finite volume discretizations of drift-diffusion type fluid models for semiconductors. In Handbook of Numerical Analysis, vol. XIII, Numerical Methods for Electrodynamic Problems. Elsevier Science, 2005.
-
-
-
-
8
-
-
0029544455
-
Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion
-
Jüngel A. Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. Zeitschrift fur Angewandte Mathematik und Mechanik 1995; 75:783-799.
-
(1995)
Zeitschrift fur Angewandte Mathematik und Mechanik
, vol.75
, pp. 783-799
-
-
Jüngel, A.1
-
10
-
-
7244255731
-
Finite volume approximation for degenerate drift-diffusion system in several space dimensions
-
Chainais-Hillairet C, Peng Y-J. Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Mathematical Models and Methods in Applied Sciences 2004; 14(3):461-481.
-
(2004)
Mathematical Models and Methods in Applied Sciences
, vol.14
, Issue.3
, pp. 461-481
-
-
Chainais-Hillairet, C.1
Peng, Y.-J.2
-
12
-
-
0032674952
-
The energy-transport and the drift-diffusion equations as relaxation limits of the hydrodynamic models for semiconductors
-
Gasser I, Natalini R. The energy-transport and the drift-diffusion equations as relaxation limits of the hydrodynamic models for semiconductors. Quarterly of Applied Mathematics 1999; 57:269-282.
-
(1999)
Quarterly of Applied Mathematics
, vol.57
, pp. 269-282
-
-
Gasser, I.1
Natalini, R.2
-
13
-
-
0030537690
-
On a hierarchy of macroscopic models for semiconductors
-
Ben Abdallah N, Degond P. On a hierarchy of macroscopic models for semiconductors. Journal of Mathematical Physics 1996; 37:3308-3333.
-
(1996)
Journal of Mathematical Physics
, vol.37
, pp. 3308-3333
-
-
Ben Abdallah, N.1
Degond, P.2
-
14
-
-
0026735256
-
An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects
-
Chen D, Kan E, Ravaioli U, Shu C-W, Dutton R. An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEE Electron Device Letters 1992; 13(1):26-28.
-
(1992)
IEE Electron Device Letters
, vol.13
, Issue.1
, pp. 26-28
-
-
Chen, D.1
Kan, E.2
Ravaioli, U.3
Shu, C.-W.4
Dutton, R.5
-
15
-
-
0028444676
-
Comparative studies of hydrodynamic and energy transport models
-
Souissi K, Odeh F, Tang H, Gnudi A. Comparative studies of hydrodynamic and energy transport models. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 1994; 13(2):439-453.
-
(1994)
COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
, vol.13
, Issue.2
, pp. 439-453
-
-
Souissi, K.1
Odeh, F.2
Tang, H.3
Gnudi, A.4
-
16
-
-
0013064955
-
Energy transport systems for semiconductors: Analysis and simulation
-
de Gruyter: Berlin
-
Jerome JW, Shu CW. Energy transport systems for semiconductors: analysis and simulation. World Congress of Nonlinear Analysis, vol. I-IV. de Gruyter: Berlin, 1996; 3835-3846.
-
(1996)
World Congress of Nonlinear Analysis
, vol.I-IV
, pp. 3835-3846
-
-
Jerome, J.W.1
Shu, C.W.2
-
17
-
-
0034964957
-
Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure
-
Degond P, Jungel A, Pietra P. Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM Journal on Scientific Computing 2000; 22(3):986-1007.
-
(2000)
SIAM Journal on Scientific Computing
, vol.22
, Issue.3
, pp. 986-1007
-
-
Degond, P.1
Jungel, A.2
Pietra, P.3
-
18
-
-
0346946958
-
A mixed finite-element discretization of the energy-transport model for semiconductors
-
Holst S, Jungel A, Pietra P. A mixed finite-element discretization of the energy-transport model for semiconductors. SIAM Journal on Scientific Computing 2003; 24(6):2058-2075.
-
(2003)
SIAM Journal on Scientific Computing
, vol.24
, Issue.6
, pp. 2058-2075
-
-
Holst, S.1
Jungel, A.2
Pietra, P.3
-
19
-
-
31244437149
-
Numerical discretization of the energy-transport model for semiconductors
-
Fournié M. Numerical discretization of the energy-transport model for semiconductors. Applied Mathematics Letters 2002; 15(6):721-726.
-
(2002)
Applied Mathematics Letters
, vol.15
, Issue.6
, pp. 721-726
-
-
Fournié, M.1
-
21
-
-
30344434032
-
A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
-
Domelevo K, Omnès P. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN 2005; 39(6):1203-1249.
-
(2005)
M2AN
, vol.39
, Issue.6
, pp. 1203-1249
-
-
Domelevo, K.1
Omnès, P.2
-
22
-
-
0039938830
-
Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem
-
Coudière Y, Vila J-P, Villedieu P. Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. M2AN 1999; 33(3):493-516.
-
(1999)
M2AN
, vol.33
, Issue.3
, pp. 493-516
-
-
Coudière, Y.1
Vila, J.-P.2
Villedieu, P.3
-
23
-
-
0001072763
-
A finite volume method for the approximation of diffusion operators on distorted meshes
-
Hermeline F. A finite volume method for the approximation of diffusion operators on distorted meshes. Journal of Computational Physics 2000; 160:481-499.
-
(2000)
Journal of Computational Physics
, vol.160
, pp. 481-499
-
-
Hermeline, F.1
-
24
-
-
0038702483
-
Approximation of diffusion operators with discontinuous coefficients on distorted meshes
-
Hermeline F. Approximation of diffusion operators with discontinuous coefficients on distorted meshes. Computer Methods in Applied Mechanics and Engineering 2003; 192:1939-1959.
-
(2003)
Computer Methods in Applied Mechanics and Engineering
, vol.192
, pp. 1939-1959
-
-
Hermeline, F.1
|