메뉴 건너뛰기




Volumn 384, Issue 2, 2009, Pages 155-159

Prediction of functionally important sites from protein sequences using sparse kernel least squares classifiers

Author keywords

Functionally important sites; Machine learning algorithms; Protein functional templates; Sparse kernel least squares classifiers

Indexed keywords

ALGORITHM; AMINO ACID SEQUENCE; ARTICLE; BINDING SITE; COMPARATIVE STUDY; ENZYME ACTIVE SITE; LIGAND BINDING; METAL BINDING; PREDICTION; PRIORITY JOURNAL; PROTEIN BINDING; PROTEIN DATABASE; PROTEIN FAMILY; PROTEIN FUNCTION; PROTEIN STRUCTURE; SENSITIVITY AND SPECIFICITY; SEQUENCE ALIGNMENT;

EID: 65649137001     PISSN: 0006291X     EISSN: 10902104     Source Type: Journal    
DOI: 10.1016/j.bbrc.2009.04.096     Document Type: Article
Times cited : (6)

References (31)
  • 1
    • 0032483312 scopus 로고    scopus 로고
    • Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases
    • Fetrow J.S., and Skolnick J. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J. Mol. Biol. 281 (1998) 949-968
    • (1998) J. Mol. Biol. , vol.281 , pp. 949-968
    • Fetrow, J.S.1    Skolnick, J.2
  • 2
    • 0032932490 scopus 로고    scopus 로고
    • From fold predictions to function predictions: automation of functional site conservation analysis for functional genome predictions
    • Zhang B., Rychlewski L., Pawlowski K., Fetrow J.S., Skolnick J., and Godzik A. From fold predictions to function predictions: automation of functional site conservation analysis for functional genome predictions. Protein Sci. 8 (1999) 1104-1115
    • (1999) Protein Sci. , vol.8 , pp. 1104-1115
    • Zhang, B.1    Rychlewski, L.2    Pawlowski, K.3    Fetrow, J.S.4    Skolnick, J.5    Godzik, A.6
  • 4
    • 0029587166 scopus 로고
    • A method to predict functional residues in proteins
    • Casari G., Sander C., and Valencia A. A method to predict functional residues in proteins. Nat. Struct. Biol. 2 (1995) 171-178
    • (1995) Nat. Struct. Biol. , vol.2 , pp. 171-178
    • Casari, G.1    Sander, C.2    Valencia, A.3
  • 5
    • 0034644783 scopus 로고    scopus 로고
    • Analysis and prediction of functional sub-types from protein sequence alignments
    • Hannenhalli S.S., and Russell R.B. Analysis and prediction of functional sub-types from protein sequence alignments. J. Mol. Biol. 303 (2000) 61-76
    • (2000) J. Mol. Biol. , vol.303 , pp. 61-76
    • Hannenhalli, S.S.1    Russell, R.B.2
  • 6
    • 0034843597 scopus 로고    scopus 로고
    • AL2CO: calculation of positional conservation in a protein sequence alignment
    • Pei J., and Grishin N.V. AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 17 (2001) 700-712
    • (2001) Bioinformatics , vol.17 , pp. 700-712
    • Pei, J.1    Grishin, N.V.2
  • 11
    • 33845924786 scopus 로고    scopus 로고
    • Analysis and prediction of FIS in proteins
    • Chakrabarti S., and Lanczycki C.J. Analysis and prediction of FIS in proteins. Protein Sci. 16 (2006) 4-13
    • (2006) Protein Sci. , vol.16 , pp. 4-13
    • Chakrabarti, S.1    Lanczycki, C.J.2
  • 12
    • 65649091582 scopus 로고    scopus 로고
    • A tool for the prediction of FIS in proteins using a library of functional templates
    • Lanczycki C.J., and Chakrabarti S. A tool for the prediction of FIS in proteins using a library of functional templates. Bioinformation 2 (2008) 279
    • (2008) Bioinformation , vol.2 , pp. 279
    • Lanczycki, C.J.1    Chakrabarti, S.2
  • 14
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., and Vapnik V. Support vector networks. Mach. Learn. 20 (1995) 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 0141506120 scopus 로고    scopus 로고
    • Characterising proteolytic cleavage site activity using bio-basis function neural networks
    • Thomson R., Hodgman T.C., Yang Z.R., and Doyle A.K. Characterising proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics 19 (2003) 1741-1747
    • (2003) Bioinformatics , vol.19 , pp. 1741-1747
    • Thomson, R.1    Hodgman, T.C.2    Yang, Z.R.3    Doyle, A.K.4
  • 16
    • 0037407113 scopus 로고    scopus 로고
    • Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
    • Nielsen M., Lundegaard C., Worning P., Lauemoller S.L., Lamberth K., Buss S S., et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12 (2003) 1007-1017
    • (2003) Protein Sci. , vol.12 , pp. 1007-1017
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Lauemoller, S.L.4    Lamberth, K.5    Buss S, S.6
  • 17
    • 0042674397 scopus 로고    scopus 로고
    • Using a neural network and spatial clustering to predict the location of active sites in enzymes
    • Gutteridge A., Bartlett G.J., and Thornton J.M. Using a neural network and spatial clustering to predict the location of active sites in enzymes. J. Mol. Biol. 330 (2003) 719-734
    • (2003) J. Mol. Biol. , vol.330 , pp. 719-734
    • Gutteridge, A.1    Bartlett, G.J.2    Thornton, J.M.3
  • 18
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • Schoelkopf B., Tsuda K., and Vert J.-P. (Eds), MIT Press, Cambridge, MA
    • Noble W.S. Support vector machine applications in computational biology. In: Schoelkopf B., Tsuda K., and Vert J.-P. (Eds). Kernel Methods in Computational Biology (2004), MIT Press, Cambridge, MA 71-92
    • (2004) Kernel Methods in Computational Biology , pp. 71-92
    • Noble, W.S.1
  • 19
    • 4944225083 scopus 로고    scopus 로고
    • Remote homology detection: a motif based approach
    • Ben-Hur A., and Brutlag D. Remote homology detection: a motif based approach. Bioinformatics 19 (2003) 26-33
    • (2003) Bioinformatics , vol.19 , pp. 26-33
    • Ben-Hur, A.1    Brutlag, D.2
  • 20
    • 33645157313 scopus 로고    scopus 로고
    • Gene selection algorithms for microarray data based on least square support vector machine
    • Tang E.K., Suganthan P.N., and Yao X. Gene selection algorithms for microarray data based on least square support vector machine. BMC Bioinformatics 7 (2006) 95
    • (2006) BMC Bioinformatics , vol.7 , pp. 95
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 21
    • 33847122913 scopus 로고    scopus 로고
    • Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions
    • Bhardwaj N., and Lu H. Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions. FEBS Lett. 581 (2007) 1058-1066
    • (2007) FEBS Lett. , vol.581 , pp. 1058-1066
    • Bhardwaj, N.1    Lu, H.2
  • 22
    • 38749104235 scopus 로고    scopus 로고
    • Identification of catalytic residues from protein structure using support vector machine with sequence and structural features
    • Pugalenthi G., Kumar K.K., Suganthan P.N., and Gangal R. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Biochem. Biophys. Res. Commun. 367 (2008) 630-634
    • (2008) Biochem. Biophys. Res. Commun. , vol.367 , pp. 630-634
    • Pugalenthi, G.1    Kumar, K.K.2    Suganthan, P.N.3    Gangal, R.4
  • 23
    • 38649097852 scopus 로고    scopus 로고
    • A machine learning approach for the identification of odorant binding proteins from sequence-derived properties
    • Pugalenthi G., Tang K., Suganthan P.N., Archunan G., and Sowdhamini R. A machine learning approach for the identification of odorant binding proteins from sequence-derived properties. BMC Bioinformatics 8 (2007) 351
    • (2007) BMC Bioinformatics , vol.8 , pp. 351
    • Pugalenthi, G.1    Tang, K.2    Suganthan, P.N.3    Archunan, G.4    Sowdhamini, R.5
  • 24
    • 0034044314 scopus 로고    scopus 로고
    • The PSIPRED protein structure prediction server
    • McGuffin L.J., Bryson K., and Jones D.T. The PSIPRED protein structure prediction server. Bioinformatics 16 (2000) 404-405
    • (2000) Bioinformatics , vol.16 , pp. 404-405
    • McGuffin, L.J.1    Bryson, K.2    Jones, D.T.3
  • 26
  • 27
    • 9444250658 scopus 로고    scopus 로고
    • Regularized least squares classification
    • Suykens J.A.K., Horvath G., Basu S., Micchelli C.A., and Vandewalle J. (Eds), IOS Press, Amsterdam
    • Rifkin R., Yeo G., and Poggio T. Regularized least squares classification. In: Suykens J.A.K., Horvath G., Basu S., Micchelli C.A., and Vandewalle J. (Eds). Advances in Learning Theory: Methods Models and Applications (2003), IOS Press, Amsterdam 131-154
    • (2003) Advances in Learning Theory: Methods Models and Applications , pp. 131-154
    • Rifkin, R.1    Yeo, G.2    Poggio, T.3
  • 28
    • 38149138405 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Keerthi S.S., Chapelle O., and DeCoste D. Building support vector machines with reduced classifier complexity. J. Mach. Learn. Res. 8 (2006) 1-22
    • (2006) J. Mach. Learn. Res. , vol.8 , pp. 1-22
    • Keerthi, S.S.1    Chapelle, O.2    DeCoste, D.3
  • 29
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection for gene expression data
    • Ding C., and Peng H. Minimum redundancy feature selection for gene expression data. Proc. IEEE Comput. Soc. Bioinform. Conf. (2003) 523-529
    • (2003) Proc. IEEE Comput. Soc. Bioinform. Conf. , pp. 523-529
    • Ding, C.1    Peng, H.2
  • 30
    • 27144551715 scopus 로고    scopus 로고
    • Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design
    • Cheng G., Qian B., Samudrala R., and Baker D. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Nucleic Acids Res. 33 (2005) 5861-5867
    • (2005) Nucleic Acids Res. , vol.33 , pp. 5861-5867
    • Cheng, G.1    Qian, B.2    Samudrala, R.3    Baker, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.