메뉴 건너뛰기




Volumn , Issue , 2008, Pages 106-114

Learning subspace kernels for classification

Author keywords

Classification; Hilbert Schmidt independence criterion; Subspace kernel; Support vector machines

Indexed keywords

BENCHMARK DATUM; CLASSIFICATION; COLUMN GENERATIONS; DATA MINING TASKS; EIGENVALUE PROBLEMS; FEATURE SPACES; HILBERT-SCHMIDT INDEPENDENCE CRITERION; JOINT OPTIMIZATIONS; KERNEL LEARNING; KERNEL METHODS; LEARNING FORMULATIONS; LEARNING SUBSPACES; LINEAR PROGRAMS; LOW-DIMENSIONAL SUBSPACES; MULTIPLE KERNEL LEARNING; MULTIPLE KERNELS; OPTIMAL SUBSPACES; REDUNDANT INFORMATIONS; SEMI INFINITES; SEMIDEFINITE PROGRAMS; SUBSPACE KERNEL; UNCORRELATED SUBSPACES;

EID: 65449122452     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401908     Document Type: Conference Paper
Times cited : (17)

References (27)
  • 7
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
    • K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 10
    • 33646528415 scopus 로고    scopus 로고
    • Measuring statistical dependence with hilbert-schmidt norms
    • A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf. Measuring statistical dependence with hilbert-schmidt norms. In ALT, pages 63-77, 2005.
    • (2005) ALT , pp. 63-77
    • Gretton, A.1    Bousquet, O.2    Smola, A.J.3    Schölkopf, B.4
  • 11
    • 0027657329 scopus 로고
    • Semi-infinite programming: Theory, methods, and applications
    • R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods, and applications. SIAM Review, 35(3):380-429, 1993.
    • (1993) SIAM Review , vol.35 , Issue.3 , pp. 380-429
    • Hettich, R.1    Kortanek, K.O.2
  • 13
    • 0000068822 scopus 로고    scopus 로고
    • A mathematical programming approach to the kernel fisher algorithm
    • S. Mika, G. Ratsch, and K.-R. Müller. A mathematical programming approach to the kernel fisher algorithm. In NIPS, pages 591-597, 2000.
    • (2000) NIPS , pp. 591-597
    • Mika, S.1    Ratsch, G.2    Müller, K.-R.3
  • 14
    • 65449116785 scopus 로고    scopus 로고
    • A. Nemirovski. Efficient methods in convex programming, 1994. Lecture Notes.
    • A. Nemirovski. Efficient methods in convex programming, 1994. Lecture Notes.
  • 16
    • 1542316654 scopus 로고    scopus 로고
    • Nonlinear feature extraction based on centroids and kernel functions
    • C. H. Park and H. Park. Nonlinear feature extraction based on centroids and kernel functions. Pattern Recognition, 37(4):801-810, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.4 , pp. 801-810
    • Park, C.H.1    Park, H.2
  • 17
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert space
    • R. Rosipal and L. J. Trejo. Kernel partial least squares regression in reproducing kernel hilbert space. Journal of Machine Learning Research, 2:97-123, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 21
    • 34547972314 scopus 로고    scopus 로고
    • A dependence maximization view of clustering
    • L. Song, A. J. Smola, A. Gretton, and K. M. Borgwardt. A dependence maximization view of clustering. In ICML, pages 815-822, 2007.
    • (2007) ICML , pp. 815-822
    • Song, L.1    Smola, A.J.2    Gretton, A.3    Borgwardt, K.M.4
  • 22
    • 34547964410 scopus 로고    scopus 로고
    • Supervised feature selection via dependence estimation
    • L. Song, A. J. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. In ICML, pages 823-830, 2007.
    • (2007) ICML , pp. 823-830
    • Song, L.1    Smola, A.J.2    Gretton, A.3    Borgwardt, K.M.4    Bedo, J.5
  • 24
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.
    • (1999) Optimization Methods and Software , vol.11-12 , pp. 625-653
    • Sturm, J.F.1
  • 25
    • 48149102643 scopus 로고    scopus 로고
    • A subspace kernel for nonlinear feature extraction
    • M. Wu and J. D. R. Farquhar. A subspace kernel for nonlinear feature extraction. In IJCAI, pages 1125-1130, 2007.
    • (2007) IJCAI , pp. 1125-1130
    • Wu, M.1    Farquhar, J.D.R.2
  • 26
    • 65449125305 scopus 로고    scopus 로고
    • Efficient kernel discriminant analysis via QR decomposition
    • T. Xiong, J. Ye, Q. Li, R. Janardan, and V. Cherkassky. Efficient kernel discriminant analysis via QR decomposition. In NIPS, 2004.
    • (2004) NIPS
    • Xiong, T.1    Ye, J.2    Li, Q.3    Janardan, R.4    Cherkassky, V.5
  • 27
    • 65449133865 scopus 로고    scopus 로고
    • J. Ye and et al. Heterogeneous data fusion and analysis for alzheimer's disease study. In KDD, 2008.
    • J. Ye and et al. Heterogeneous data fusion and analysis for alzheimer's disease study. In KDD, 2008.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.