-
1
-
-
36849072723
-
-
MIT Press
-
G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan. Predicting Structured Data. MIT Press, 2007.
-
(2007)
Predicting Structured Data
-
-
Bakir, G.H.1
Hofmann, T.2
Schölkopf, B.3
Smola, A.J.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
6
-
-
0041995195
-
-
On kernel-target alignment
-
N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola. On kernel-target alignment. In NIPS, pages 367-373, 2001.
-
(2001)
NIPS
, pp. 367-373
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Elisseeff, A.3
Kandola, J.S.4
-
7
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
-
K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
10
-
-
33646528415
-
Measuring statistical dependence with hilbert-schmidt norms
-
A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf. Measuring statistical dependence with hilbert-schmidt norms. In ALT, pages 63-77, 2005.
-
(2005)
ALT
, pp. 63-77
-
-
Gretton, A.1
Bousquet, O.2
Smola, A.J.3
Schölkopf, B.4
-
11
-
-
0027657329
-
Semi-infinite programming: Theory, methods, and applications
-
R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods, and applications. SIAM Review, 35(3):380-429, 1993.
-
(1993)
SIAM Review
, vol.35
, Issue.3
, pp. 380-429
-
-
Hettich, R.1
Kortanek, K.O.2
-
12
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
13
-
-
0000068822
-
A mathematical programming approach to the kernel fisher algorithm
-
S. Mika, G. Ratsch, and K.-R. Müller. A mathematical programming approach to the kernel fisher algorithm. In NIPS, pages 591-597, 2000.
-
(2000)
NIPS
, pp. 591-597
-
-
Mika, S.1
Ratsch, G.2
Müller, K.-R.3
-
14
-
-
65449116785
-
-
A. Nemirovski. Efficient methods in convex programming, 1994. Lecture Notes.
-
A. Nemirovski. Efficient methods in convex programming, 1994. Lecture Notes.
-
-
-
-
16
-
-
1542316654
-
Nonlinear feature extraction based on centroids and kernel functions
-
C. H. Park and H. Park. Nonlinear feature extraction based on centroids and kernel functions. Pattern Recognition, 37(4):801-810, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.4
, pp. 801-810
-
-
Park, C.H.1
Park, H.2
-
17
-
-
0038259120
-
Kernel partial least squares regression in reproducing kernel hilbert space
-
R. Rosipal and L. J. Trejo. Kernel partial least squares regression in reproducing kernel hilbert space. Journal of Machine Learning Research, 2:97-123, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.J.2
-
21
-
-
34547972314
-
A dependence maximization view of clustering
-
L. Song, A. J. Smola, A. Gretton, and K. M. Borgwardt. A dependence maximization view of clustering. In ICML, pages 815-822, 2007.
-
(2007)
ICML
, pp. 815-822
-
-
Song, L.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
-
22
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
L. Song, A. J. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. In ICML, pages 823-830, 2007.
-
(2007)
ICML
, pp. 823-830
-
-
Song, L.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
Bedo, J.5
-
23
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Ratsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
24
-
-
0033296299
-
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
-
J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.
-
(1999)
Optimization Methods and Software
, vol.11-12
, pp. 625-653
-
-
Sturm, J.F.1
-
25
-
-
48149102643
-
A subspace kernel for nonlinear feature extraction
-
M. Wu and J. D. R. Farquhar. A subspace kernel for nonlinear feature extraction. In IJCAI, pages 1125-1130, 2007.
-
(2007)
IJCAI
, pp. 1125-1130
-
-
Wu, M.1
Farquhar, J.D.R.2
-
26
-
-
65449125305
-
Efficient kernel discriminant analysis via QR decomposition
-
T. Xiong, J. Ye, Q. Li, R. Janardan, and V. Cherkassky. Efficient kernel discriminant analysis via QR decomposition. In NIPS, 2004.
-
(2004)
NIPS
-
-
Xiong, T.1
Ye, J.2
Li, Q.3
Janardan, R.4
Cherkassky, V.5
-
27
-
-
65449133865
-
-
J. Ye and et al. Heterogeneous data fusion and analysis for alzheimer's disease study. In KDD, 2008.
-
J. Ye and et al. Heterogeneous data fusion and analysis for alzheimer's disease study. In KDD, 2008.
-
-
-
|