-
1
-
-
38849196324
-
-
Ball, P. Chem. ReV. 2008, 108, 74-108.
-
Chem. Re
, vol.2008
, Issue.108
, pp. 74-108
-
-
Ball, P.1
-
2
-
-
26944481188
-
-
Chandler, D. Nature 2005, 437, 640-647.
-
(2005)
Nature
, vol.437
, pp. 640-647
-
-
Chandler, D.1
-
3
-
-
33746824856
-
-
Blokzijl, W.; Engberts, J. B. F. N. Angew. Chem., Int. Ed. 1993, 32, 1545-1579.
-
(1993)
Angew. Chem., Int. Ed
, vol.32
, pp. 1545-1579
-
-
Blokzijl, W.1
Engberts, J.B.F.N.2
-
6
-
-
0029831068
-
-
Hummer, G.; Garde, S.; Garcia, A. E.; Pohorille, A.; Pratt, L. R. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8951.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A
, vol.93
, pp. 8951
-
-
Hummer, G.1
Garde, S.2
Garcia, A.E.3
Pohorille, A.4
Pratt, L.R.5
-
7
-
-
0000628154
-
-
Hummer, G.; Garde, S.; Garcia, A. E.; Paulaitis, M. E.; Pratt, L. R. J. Phys. Chem. B 1998, 102, 10469.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 10469
-
-
Hummer, G.1
Garde, S.2
Garcia, A.E.3
Paulaitis, M.E.4
Pratt, L.R.5
-
8
-
-
0037165448
-
-
Southall, N. T.; Dill, K. A.; Haymet, A. D. J. J. Phys. Chem. B 2002, 106, 521.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 521
-
-
Southall, N.T.1
Dill, K.A.2
Haymet, A.D.J.3
-
13
-
-
0031646751
-
-
Yoshida, K.; Ibuki, K.; Ueno, M. J. Chem. Phys. 1998, 108, 1360- 1367.
-
(1998)
J. Chem. Phys
, vol.108
, pp. 1360-1367
-
-
Yoshida, K.1
Ibuki, K.2
Ueno, M.3
-
14
-
-
0001281239
-
-
Haselmeier, R.; Holz, M.; Marbach, W.; Weingartner, H. J. Phys. Chem. 1995, 99, 2243.
-
(1995)
J. Phys. Chem
, vol.99
, pp. 2243
-
-
Haselmeier, R.1
Holz, M.2
Marbach, W.3
Weingartner, H.4
-
15
-
-
0034187378
-
-
Shimizu, A.; Fumino, K.; Yukiyasu, K.; Taniguchi, Y. J. Mol. Liq. 2000, 85, 269.
-
(2000)
J. Mol. Liq
, vol.85
, pp. 269
-
-
Shimizu, A.1
Fumino, K.2
Yukiyasu, K.3
Taniguchi, Y.4
-
16
-
-
33748588703
-
-
Okouchi, S.; Moto, T.; Ishihara, Y.; Numajiri, H.; Uedaira, H. J. Chem. Soc., Faraday Trans. 1996, 92, 1853.
-
(1996)
J. Chem. Soc., Faraday Trans
, vol.92
, pp. 1853
-
-
Okouchi, S.1
Moto, T.2
Ishihara, Y.3
Numajiri, H.4
Uedaira, H.5
-
17
-
-
33748597945
-
-
Ishihara, Y.; Okouchi, S.; Uedaira, H. J. Chem. Soc., Faraday Trans. 1997, 93, 3337.
-
(1997)
J. Chem. Soc., Faraday Trans
, vol.93
, pp. 3337
-
-
Ishihara, Y.1
Okouchi, S.2
Uedaira, H.3
-
20
-
-
26444443012
-
-
Buchanan, P.; Aldiwan, N.; Soper, A. K.; Creek, J. L.; Koh, C. A. Chem. Phys. Lett. 2005, 415, 89.
-
Buchanan, P.; Aldiwan, N.; Soper, A. K.; Creek, J. L.; Koh, C. A. Chem. Phys. Lett. 2005, 415, 89.
-
-
-
-
21
-
-
0036450690
-
-
Our simulations of dilute TMAO solutions yield a second-order reorientation time of the TMAO NsO axis of 14 ps, consistent with the first-order Debye relaxation time of 30 ps measured experimentally: Shikata, T, Itatani, S J. Solution Chem. 2002, 31, 823-844. The NO anisotropy thus decays by more than 50% on the 0-10-ps interval
-
Our simulations of dilute TMAO solutions yield a second-order reorientation time of the TMAO NsO axis of 14 ps, consistent with the first-order Debye relaxation time of 30 ps measured experimentally: Shikata, T.; Itatani, S J. Solution Chem. 2002, 31, 823-844. The NO anisotropy thus decays by more than 50% on the 0-10-ps interval.
-
-
-
-
22
-
-
1242346370
-
-
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.
-
(1987)
J. Phys. Chem
, vol.91
, pp. 6269
-
-
Berendsen, H.J.C.1
Grigera, J.R.2
Straatsma, T.P.3
-
23
-
-
6044273657
-
-
Grossman, J. C.; Schwegler, E.; Galli, G. J. Phys. Chem. B 2004, 108, 15865.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 15865
-
-
Grossman, J.C.1
Schwegler, E.2
Galli, G.3
-
24
-
-
36549104841
-
-
Straatsma, T. P.; Berendsen, H. J. C.; Postma, J. P. M. J. Chem. Phys. 1986, 85, 6720.
-
(1986)
J. Chem. Phys
, vol.85
, pp. 6720
-
-
Straatsma, T.P.1
Berendsen, H.J.C.2
Postma, J.P.M.3
-
25
-
-
0033569390
-
-
Belletato, P.; Freitas, L. C. G.; Areas, E. P. G.; Santos, P. S. Phys. Chem. Chem. Phys. 1999, 1, 4769.
-
(1999)
Phys. Chem. Chem. Phys
, vol.1
, pp. 4769
-
-
Belletato, P.1
Freitas, L.C.G.2
Areas, E.P.G.3
Santos, P.S.4
-
27
-
-
0038717923
-
-
Kast, K. M.; Brickmann, J.; Kast, S. M.; Berry, R. S. J. Phys. Chem. A 2003, 107, 5342.
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 5342
-
-
Kast, K.M.1
Brickmann, J.2
Kast, S.M.3
Berry, R.S.4
-
28
-
-
0242408240
-
-
Fornili, A.; Civera, M.; Sironi, M.; Fornili, S. L. Phys. Chem. Chem. Phys. 2003, 5, 4905.
-
(2003)
Phys. Chem. Chem. Phys
, vol.5
, pp. 4905
-
-
Fornili, A.1
Civera, M.2
Sironi, M.3
Fornili, S.L.4
-
29
-
-
0036751377
-
-
Patil, K. J.; Sargar, A. M.; Dagade, D. H Indian J. Chem. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem. 2002, 41, 1804.
-
Patil, K. J.; Sargar, A. M.; Dagade, D. H Indian J. Chem. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem. 2002, 41, 1804.
-
-
-
-
30
-
-
0037138672
-
-
Zou, Q.; Bennion, B. J.; Daggett, V.; Murphy, K. P. J. Am. Chem. Soc. 2002, 124, 1192.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 1192
-
-
Zou, Q.1
Bennion, B.J.2
Daggett, V.3
Murphy, K.P.4
-
32
-
-
0000494747
-
-
Nakanishi, K.; Kato, N.; Maruyama, M. J. Phys. Chem. 1967, 71, 814.
-
(1967)
J. Phys. Chem
, vol.71
, pp. 814
-
-
Nakanishi, K.1
Kato, N.2
Maruyama, M.3
-
33
-
-
84906388720
-
-
In a 4 m aqueous TMAO solution, the experimental water translational diffusion constant is 0.54 × 10-5 cm2 s-1;26 the rigid model leads to a 1.0 × 10-5 cm2 s-1 value, in better agreement than the flexible model, which yields a diffusion constant of 1.5 × 10-5 cm2 s-1.
-
In a 4 m aqueous TMAO solution, the experimental water translational diffusion constant is 0.54 × 10-5 cm2 s-1;26 the rigid model leads to a 1.0 × 10-5 cm2 s-1 value, in better agreement than the flexible model, which yields a diffusion constant of 1.5 × 10-5 cm2 s-1.
-
-
-
-
37
-
-
33845321069
-
-
(a) Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2006, 125, 194522.
-
(2006)
J. Chem. Phys
, vol.125
, pp. 194522
-
-
Loparo, J.J.1
Roberts, S.T.2
Tokmakoff, A.3
-
38
-
-
57149129583
-
-
(b) Bakker, H. J.; Rezus, Y. L. A.; Timmer, R. L. A. J. Phys. Chem. A. 2008, 112, 11523-11534.
-
(2008)
J. Phys. Chem. A
, vol.112
, pp. 11523-11534
-
-
Bakker, H.J.1
Rezus, Y.L.A.2
Timmer, R.L.A.3
-
41
-
-
84906388721
-
-
These retardation factors were determined from the anisotropy decay times for water OH bonds initially next to each of the solute sites. These decay times are approximations, as the residence time of water next to these sites is comparable to the anisotropy decay value
-
These retardation factors were determined from the anisotropy decay times for water OH bonds initially next to each of the solute sites. These decay times are approximations, as the residence time of water next to these sites is comparable to the anisotropy decay value.
-
-
-
-
42
-
-
34547403281
-
-
Nakada, M.; Yamamuro, O.; Maruyama, K.; Misawa, M. J. Phys. Soc. Jpn. 2007, 76, 054601.
-
(2007)
J. Phys. Soc. Jpn
, vol.76
, pp. 054601
-
-
Nakada, M.1
Yamamuro, O.2
Maruyama, K.3
Misawa, M.4
-
44
-
-
84906360335
-
-
The reactant state is defined by the existence of a H-bond with the initial partner, without any restriction on the new partner location. The presence of the hydrophobic group, therefore, does not impose any limitation on the accessible reactant states
-
The reactant state is defined by the existence of a H-bond with the initial partner, without any restriction on the new partner location. The presence of the hydrophobic group, therefore, does not impose any limitation on the accessible reactant states.
-
-
-
-
45
-
-
0009502708
-
-
Sciortino, F.; Geiger, A.; Stanley, H. E. Nature 1991, 354, 218- 221.
-
(1991)
Nature
, vol.354
, pp. 218-221
-
-
Sciortino, F.1
Geiger, A.2
Stanley, H.E.3
-
47
-
-
84906388722
-
-
However, next to an extended hydrophobic surface, the H-bond arrangement is no longer clathrate-like,2,5 and our model should be extended to include the OH bonds pointing toward the surface.
-
However, next to an extended hydrophobic surface, the H-bond arrangement is no longer clathrate-like,2,5 and our model should be extended to include the OH bonds pointing toward the surface.
-
-
-
-
48
-
-
84906374626
-
-
In ref 11, a steric factor associated with the attainment of the fivecoordinate transition state (originally found in ref 34 and found again in the present work) was invoked to explain the immobilization. However, in dilute solutions, the transition-state excluded fraction cannot exceed 1/2, and the maximum slowdown is 2, very far from immobilization
-
In ref 11, a steric factor associated with the attainment of the fivecoordinate transition state (originally found in ref 34 and found again in the present work) was invoked to explain the immobilization. However, in dilute solutions, the transition-state excluded volume fraction cannot exceed 1/2, and the maximum slowdown is 2, very far from immobilization.
-
-
-
-
49
-
-
33847087173
-
-
Hallenga, K.; Grigera, J. R.; Berendsen, H. J. C. J. Phys. Chem. 1980, 84, 2381-2390.
-
(1980)
J. Phys. Chem
, vol.84
, pp. 2381-2390
-
-
Hallenga, K.1
Grigera, J.R.2
Berendsen, H.J.C.3
-
50
-
-
84906403280
-
-
The entropic factor was also assumed to be temperature-independent through its microcanonical expression in eq 3
-
The entropic factor was also assumed to be temperature-independent through its microcanonical expression in eq 3.
-
-
-
-
51
-
-
84906388540
-
-
See within; for TMAO, the more pronounced slowdown is around the hydrophilic head (∼2.4) rather than around the hydrophobic moiety (∼1.5).
-
See within; for TMAO, the more pronounced slowdown is around the hydrophilic head (∼2.4) rather than around the hydrophobic moiety (∼1.5).
-
-
-
-
52
-
-
0001419379
-
-
Belton, P. S.; Ring, S. G.; Botham, R. L.; Hills, B. P. Mol. Phys. 1991, 72, 1123.
-
(1991)
Mol. Phys
, vol.72
, pp. 1123
-
-
Belton, P.S.1
Ring, S.G.2
Botham, R.L.3
Hills, B.P.4
-
54
-
-
33846365264
-
-
Pal, S.; Maiti, P. K.; Bagchi, B.; Hynes, J. T. J. Phys. Chem. B 2006, 110, 26396.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 26396
-
-
Pal, S.1
Maiti, P.K.2
Bagchi, B.3
Hynes, J.T.4
-
55
-
-
0037816372
-
-
Pal, S. K.; Zhao, L. A.; Zewail, A. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8113.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A
, vol.100
, pp. 8113
-
-
Pal, S.K.1
Zhao, L.A.2
Zewail, A.H.3
-
58
-
-
8344231613
-
-
Harpham, M. R.; Ladanyi, B. M.; Levinger, N. E.; Herwig, K. W. J. Chem. Phys. 2004, 121, 7855.
-
(2004)
J. Chem. Phys
, vol.121
, pp. 7855
-
-
Harpham, M.R.1
Ladanyi, B.M.2
Levinger, N.E.3
Herwig, K.W.4
-
59
-
-
33750359915
-
-
Dokter, A. M.; Woutersen, S.; Bakker, H. J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15355.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A
, vol.103
, pp. 15355
-
-
Dokter, A.M.1
Woutersen, S.2
Bakker, H.J.3
-
60
-
-
47249106460
-
-
Park, S.; Moilanen, D. E.; Fayer, M. D. J. Phys. Chem. B 2008, 112, 5279.
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 5279
-
-
Park, S.1
Moilanen, D.E.2
Fayer, M.D.3
-
61
-
-
84906360334
-
-
Our simulation anisotropies are scaled to compensate for the different initial, 200-fs librational decays measured by the experiments and the simulations, which has no consequence for the remaining analysis
-
Our simulation anisotropies are scaled to compensate for the different initial (?200-fs) librational decays measured by the experiments and the simulations, which has no consequence for the remaining analysis.
-
-
-
-
62
-
-
84906388718
-
-
The OD stretch vibrational lifetime was experimentally11 confirmed to be unaffected by TMAO, which excludes a bias (shown for halides35) of ultrafast anisotropy measurements toward a slower reorientation.
-
The OD stretch vibrational lifetime was experimentally11 confirmed to be unaffected by TMAO, which excludes a bias (shown for halides35) of ultrafast anisotropy measurements toward a slower reorientation.
-
-
-
-
63
-
-
84906374621
-
-
As explained at the end of section IV.b, at high concentration, the anisotropy decay is no longer strictly monoexponential because of the broad distribution of excluded here, we use the monoexponential approximation to compare the retardation factors from the simulations and the TSEV model
-
As explained at the end of section IV.b, at high concentration, the anisotropy decay is no longer strictly monoexponential because of the broad distribution of excluded volumes; here, we use the monoexponential approximation to compare the retardation factors from the simulations and the TSEV model.
-
-
-
|