메뉴 건너뛰기




Volumn 23, Issue 7, 2009, Pages 1019-1030

Simulation and analysis of runoff from a partly glaciated meso-scale catchment area in Patagonia using an artificial neural network

Author keywords

Artificial neural network; Global sensifivity analysis; Patagonia; Rainfall runoff modelling; South America; Stream flow forecasting

Indexed keywords

ATMOSPHERIC RADIATION; BACKPROPAGATION; CATCHMENTS; CONVERGENCE OF NUMERICAL METHODS; NEURAL NETWORKS; SEA LEVEL; SEAWATER; SENSITIVITY ANALYSIS; WATER LEVELS; WEATHER FORECASTING; WEATHER INFORMATION SERVICES;

EID: 62249181485     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.7210     Document Type: Conference Paper
Times cited : (9)

References (37)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automotive Control 19: 716-723.
    • (1974) IEEE Transactions on Automotive Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology, I: preliminary concepts. Journal of Hydrologic Engineering ASCE 5(2): 115-123.
    • (2000) Journal of Hydrologic Engineering ASCE , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology, II: hydrological applications. Journal of Hydrologic Engineering ASCE 5(2): 124-137.
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology, II: hydrological applications. Journal of Hydrologic Engineering ASCE 5(2): 124-137.
  • 4
    • 0003691877 scopus 로고    scopus 로고
    • John Wiley and Sons: Chichester, UK;
    • Beven KJ. 2001. Rainfall-Runoff Modelling. John Wiley and Sons: Chichester, UK; 372.
    • (2001) Rainfall-Runoff Modelling , pp. 372
    • Beven, K.J.1
  • 5
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson CW, Wilby R. 2001. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25: 80-108.
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.2
  • 7
    • 62249169003 scopus 로고    scopus 로고
    • Fischbach T, Behrmann J, Kilian R, Hegner E, Hohner M. 2000. Geotectonic and geochemical implications on the tectonic development of the southernmost Andes, Kurzfassung zur 17. LAK in Stuttgart, 49.
    • Fischbach T, Behrmann J, Kilian R, Hegner E, Hohner M. 2000. Geotectonic and geochemical implications on the tectonic development of the southernmost Andes, Kurzfassung zur 17. LAK in Stuttgart, 49.
  • 9
    • 0030121081 scopus 로고    scopus 로고
    • Important measures in global sensitivity analysis of nonlinear models
    • Hommat T, Saltelli A. 1996. Important measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety 52(1): 1-17.
    • (1996) Reliability Engineering & System Safety , vol.52 , Issue.1 , pp. 1-17
    • Hommat, T.1    Saltelli, A.2
  • 10
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu K, Gupta HV, Gao X, Sorooshian S. 1995. Artificial neural network modelling of the rainfall-runoff process. Water Resources Research 31(10): 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4
  • 11
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A, Sudheer KP, Srinivasulu S. 2004. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrological Processes 18: 571-581.
    • (2004) Hydrological Processes , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 12
    • 62249219542 scopus 로고    scopus 로고
    • JRC. 2006. Website of SIMLAB software and download at Joint Research Center, Ispra, http://webfarm.jrc.cec.eu.int/uasa/primer/index.asp.
    • JRC. 2006. Website of SIMLAB software and download at Joint Research Center, Ispra, http://webfarm.jrc.cec.eu.int/uasa/primer/index.asp.
  • 15
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of backpropagation neural networks: An empirical study
    • Maier HR, Dandy GC. 1998. The effect of internal parameters and geometry on the performance of backpropagation neural networks: an empirical study. Enviromental Modelling and Software 13: 193-209.
    • (1998) Enviromental Modelling and Software , vol.13 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 16
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier HR, Dandy DC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Enviromental Modelling and Software 15: 101-123.
    • (2000) Enviromental Modelling and Software , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, D.C.2
  • 17
  • 18
    • 33947114620 scopus 로고    scopus 로고
    • Artificial neural network concepts in hydrology
    • Anderson MG, McDonnell JJ eds, John Wiley and Sons: Chichester
    • Minns AW, Hall MJ. 2005. Artificial neural network concepts in hydrology. In Encyclopedia of Hydrological Sciences, Anderson MG, McDonnell JJ (eds). John Wiley and Sons: Chichester.
    • (2005) Encyclopedia of Hydrological Sciences
    • Minns, A.W.1    Hall, M.J.2
  • 19
    • 45249123560 scopus 로고    scopus 로고
    • Glacier change and climate forcing at Gran Campo Nevado, southernmost Patagonia
    • Möller M, Schneider C, Kilian R. 2007. Glacier change and climate forcing at Gran Campo Nevado, southernmost Patagonia. Annals of Glaciology 46: 136-144.
    • (2007) Annals of Glaciology , vol.46 , pp. 136-144
    • Möller, M.1    Schneider, C.2    Kilian, R.3
  • 20
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I - A discussion of principles
    • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology 10(3): 282-290.
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 21
    • 8644290330 scopus 로고    scopus 로고
    • Künstliche Neuronale Netze: Überblick, Einsatzmöglichkeiten und Anwendungsprobleme ( Artificial Neural Networks: Overview, Application and Problems)
    • eds, Vieweg Verlagsgesellschaft: Braunschweig;
    • Poddig T, Sidorovitch S. 2001. Künstliche Neuronale Netze: Überblick, Einsatzmöglichkeiten und Anwendungsprobleme ( Artificial Neural Networks: Overview, Application and Problems). In Handbuch Data Mining im Marketing, Hippner H, Kuestner U, Meyer M, Wilde K (eds). Vieweg Verlagsgesellschaft: Braunschweig; 363-402.
    • (2001) Handbuch Data Mining im Marketing, Hippner H, Kuestner U, Meyer M, Wilde K , pp. 363-402
    • Poddig, T.1    Sidorovitch, S.2
  • 23
    • 0018015137 scopus 로고
    • Modeling by short data description
    • Rissanen J. 1978. Modeling by short data description. Automation 14: 465-471.
    • (1978) Automation , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 24
    • 0001244976 scopus 로고    scopus 로고
    • Sensitivity Analysis as an ingredient of modeling
    • Saltelli A, Tarantola S, Campolongo F. 2000. Sensitivity Analysis as an ingredient of modeling. Statistical Science 15(4): 877-895.
    • (2000) Statistical Science , vol.15 , Issue.4 , pp. 877-895
    • Saltelli, A.1    Tarantola, S.2    Campolongo, F.3
  • 27
    • 35148839525 scopus 로고    scopus 로고
    • Energy balance in the ablation zone during the summer season at the Gran Campo Nevado Ice Cap in the Southern Andes
    • Schneider C, Kilian R, Glaser M. 2007a. Energy balance in the ablation zone during the summer season at the Gran Campo Nevado Ice Cap in the Southern Andes. Global and Planetary Change 59(1): 175-188.
    • (2007) Global and Planetary Change , vol.59 , Issue.1 , pp. 175-188
    • Schneider, C.1    Kilian, R.2    Glaser, M.3
  • 28
    • 35148831232 scopus 로고    scopus 로고
    • Glacier inventory of the Gran Campo Nevado Ice Cap in the Southern Andes and glacier changes observed during recent decades
    • Schneider C, Schnirch M, Acuña C, Casassa G, Kilian R. 2007b. Glacier inventory of the Gran Campo Nevado Ice Cap in the Southern Andes and glacier changes observed during recent decades. Global and Planetary Change 59(1): 87-100.
    • (2007) Global and Planetary Change , vol.59 , Issue.1 , pp. 87-100
    • Schneider, C.1    Schnirch, M.2    Acuña, C.3    Casassa, G.4    Kilian, R.5
  • 29
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin AY. 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199: 272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 30
    • 0034926426 scopus 로고    scopus 로고
    • Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
    • Sobol IM. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 55: 271-280.
    • (2001) Mathematics and Computers in Simulation , vol.55 , pp. 271-280
    • Sobol, I.M.1
  • 31
    • 33645982638 scopus 로고    scopus 로고
    • Data-driven modeling and computational intelligence methods in hydrology
    • Anderson MG, McDonnell JJ eds, John Wiley and Sons: Chichester
    • Solomatine DP. 2005. Data-driven modeling and computational intelligence methods in hydrology. In Encyclopedia of Hydrological Sciences, Anderson MG, McDonnell JJ (eds). John Wiley and Sons: Chichester.
    • (2005) Encyclopedia of Hydrological Sciences
    • Solomatine, D.P.1
  • 32
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer KP, Gosain AK, Ramasastri KS. 2002. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 16: 1325-1330.
    • (2002) Hydrological Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 33
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer KP, Jain A. 2004. Explaining the internal behaviour of artificial neural network river flow models. Hydrological Processes 18: 833-844.
    • (2004) Hydrological Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 36
    • 0037388711 scopus 로고    scopus 로고
    • Detecting of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby RL, Abrahart RJ, Dawson CW. 2003. Detecting of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrological Sciences Journal 48(2): 163-181.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.