-
1
-
-
0027703505
-
-
Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; Mcree, D. E.; Khazanovich, N. Nature 1993, 366, 324.
-
(1993)
Nature
, vol.366
, pp. 324
-
-
Ghadiri, M.R.1
Granja, J.R.2
Milligan, R.A.3
Mcree, D.E.4
Khazanovich, N.5
-
2
-
-
0037110083
-
-
Nakanishi, T.; Okamoto, H.; Nagai, Y.; Takeda, K.; Obataya, I.; Mihara, H.; Azehara, H.; Suzuki, Y.; Mizutani, W.; Furukawa, K.; Torimitsu, K. Phys. Rev. B 2002, 66, 165417.
-
(2002)
Phys. Rev. B
, vol.66
, pp. 165417
-
-
Nakanishi, T.1
Okamoto, H.2
Nagai, Y.3
Takeda, K.4
Obataya, I.5
Mihara, H.6
Azehara, H.7
Suzuki, Y.8
Mizutani, W.9
Furukawa, K.10
Torimitsu, K.11
-
4
-
-
0035796637
-
-
Sanchez-Quesada, J.; Kim, H. S.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001, 40, 2503.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 2503
-
-
Sanchez-Quesada, J.1
Kim, H.S.2
Ghadiri, M.R.3
-
5
-
-
0035954729
-
-
Fernandez-Lopez, S.; Kim, H. S.; Choi, E. C.; Delgado, M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxenl, K. M.; Ghadiri, M. R. Nature 2001, 412, 452.
-
(2001)
Nature
, vol.412
, pp. 452
-
-
Fernandez-Lopez, S.1
Kim, H.S.2
Choi, E.C.3
Delgado, M.4
Granja, J.R.5
Khasanov, A.6
Kraehenbuehl, K.7
Long, G.8
Weinberger, D.A.9
Wilcoxenl, K.M.10
Ghadiri, M.R.11
-
6
-
-
0032513708
-
-
Kim, H. S.; Hartgerink, J. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 4417.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 4417
-
-
Kim, H.S.1
Hartgerink, J.D.2
Ghadiri, M.R.3
-
8
-
-
0032651702
-
-
Steinem, C.; Janshoff, A.; Vollmer, M. S.; Ghadiri, M. R. Langmuir 1999, 75, 3956.
-
(1999)
Langmuir
, vol.75
, pp. 3956
-
-
Steinem, C.1
Janshoff, A.2
Vollmer, M.S.3
Ghadiri, M.R.4
-
9
-
-
0031553302
-
-
Lewis, J. P.; Pawley, N. H.; Sankey, O. F. J. Phys. Chem. B 1997, 101, 10576.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 10576
-
-
Lewis, J.P.1
Pawley, N.H.2
Sankey, O.F.3
-
10
-
-
21944442897
-
-
(a) Fukasaku, K.; Takeda, K.; Shiraishi, K J. Phys. Soc. Jpn. 1997, 66, 3387.
-
(1997)
J. Phys. Soc. Jpn
, vol.66
, pp. 3387
-
-
Fukasaku, K.1
Takeda, K.2
Shiraishi, K.3
-
11
-
-
0003670644
-
-
(b) Fukasaku, K.; Takeda, K.; Shiraishi, K J. Phys. Soc. Jpn. 1998, 67, 3751.
-
(1998)
J. Phys. Soc. Jpn
, vol.67
, pp. 3751
-
-
Fukasaku, K.1
Takeda, K.2
Shiraishi, K.3
-
12
-
-
0000688209
-
-
Carloni, P.; Andreoni, W.; Parrinello, M. Phys. Rev. Lett. 1997, 79, 761.
-
(1997)
Phys. Rev. Lett
, vol.79
, pp. 761
-
-
Carloni, P.1
Andreoni, W.2
Parrinello, M.3
-
13
-
-
0000579750
-
-
Jishi, R. A.; Braier, N. C.; White, C. T.; Mintmeir. J. W. Phys. Rev. B 1998, 58, R16009.
-
(1998)
Phys. Rev. B
, vol.58
-
-
Jishi, R.A.1
Braier, N.C.2
White, C.T.3
Mintmeir, J.W.4
-
14
-
-
0035884466
-
-
Okamoto, H.; Takeda, K.; Shiraishi, K. Phys. Rev. B 2001, 64, 115425.
-
(2001)
Phys. Rev. B
, vol.64
, pp. 115425
-
-
Okamoto, H.1
Takeda, K.2
Shiraishi, K.3
-
15
-
-
65449175335
-
-
DOI: 10.1002/jcc.21110
-
Okamoto, H.; Yamada, T.; Kihara, S.; Takechi, K.; Takagi, H.; Takeda, K. J. Comput. Chem. 2008, DOI: 10.1002/jcc.21110.
-
(2008)
J. Comput. Chem
-
-
Okamoto, H.1
Yamada, T.2
Kihara, S.3
Takechi, K.4
Takagi, H.5
Takeda, K.6
-
16
-
-
0037420311
-
-
Okamoto, H.; Nakanishi, T.; Nagai, Y.; Kasahara, M.; Takeda, K. J. Am. Chem. Soc. 2003, 125, 2756.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 2756
-
-
Okamoto, H.1
Nakanishi, T.2
Nagai, Y.3
Kasahara, M.4
Takeda, K.5
-
17
-
-
2942532422
-
-
Wang, J.; Wolf, M. R.; Caldwell, W. J.; Kollman, A. P.; Case, A. D. J. Comput. Chem. 2004, 25, 1157.
-
(2004)
J. Comput. Chem
, vol.25
, pp. 1157
-
-
Wang, J.1
Wolf, M.R.2
Caldwell, W.J.3
Kollman, A.P.4
Case, A.D.5
-
18
-
-
0242663237
-
-
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, C. M.; Xiong, G.; Zhang, J.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.: Kollman, P. J. Comput. Chem. 2003, 24, 1999.
-
(1999)
J. Comput. Chem
, vol.2003
, pp. 24
-
-
Duan, Y.1
Wu, C.2
Chowdhury, S.3
Lee, C.M.4
Xiong, G.5
Zhang, J.6
Yang, R.7
Cieplak, P.8
Luo, R.9
Lee, T.10
Caldwell, J.11
Wang, J.12
Kollman, P.13
-
19
-
-
0001398008
-
-
Wang, J.; Cieplak, P.; Kollman, A. P. J. Comput. Chem. 2000, 21, 1049.
-
(2000)
J. Comput. Chem
, vol.21
, pp. 1049
-
-
Wang, J.1
Cieplak, P.2
Kollman, A.P.3
-
20
-
-
84906396526
-
-
The relative energy of the Eeq conformer to the Bax conformer is calculated to be 11.47 kcal/mol by the AMBER force field, which is numerically 5.43 kcal/mol lower than that at the B3LYP/6-31G** level. The corresponding value is, however, 3.99 kcal/mol when the AMBER/ff03 which reproduces the PNRs well, is employed. Also, that value of 2.97 kcal/mol lower is given by the HF/6-31G** calculation. Furthermore, the numerically different values (15.85 kcal/mol higher) are obtained in accordance with the different choice of the basis set (e.g, B3LYP/3-21G**) even when the DFT calculation is achieved. Thus, it can be said that Eeq is energetically more unstable than Bax, and the corresponding energy difference is almost several kcal/mol or at least less than 10 kcal/mol
-
**) even when the DFT calculation is achieved. Thus, it can be said that Eeq is energetically more unstable than Bax, and the corresponding energy difference is almost several kcal/mol or at least less than 10 kcal/mol.
-
-
-
-
21
-
-
84906396525
-
-
The DFT calculation predicts that the LMl has the catenation of BEEEEE, whereas the AMBER force field prefers the B conformation in the sequence as BBBBBB (AMBER/gaff) and EBBBBB (AMBER/ff03).
-
The DFT calculation predicts that the LMl has the catenation of BEEEEE, whereas the AMBER force field prefers the B conformation in the sequence as BBBBBB (AMBER/gaff) and EBBBBB (AMBER/ff03).
-
-
-
-
23
-
-
84906382217
-
-
We also assume that these tubes are parallelly placed with the intertube length of 60 Å in order to represent the isolated single tube having a finite
-
We also assume that these tubes are parallelly placed with the intertube length of 60 Å in order to represent the isolated single tube having a finite volume.
-
-
-
-
24
-
-
84906396522
-
-
The sole difference is that the AMBER potential estimates the E-tube being energetically more stable than the B-tube by 1.18 kcal/mol per ring. This relation is completely opposite to that obtained by the firstprinciples calculation
-
The sole difference is that the AMBER potential estimates the E-tube being energetically more stable than the B-tube by 1.18 kcal/mol per ring. This relation is completely opposite to that obtained by the firstprinciples calculation.
-
-
-
|