메뉴 건너뛰기




Volumn 72, Issue 7-9, 2009, Pages 1597-1604

Independent component analysis based on gradient equation and kernel density estimation

Author keywords

Blind source separation; Gradient method; Independent component analysis; Kernel density estimation

Indexed keywords

DENSITY FUNCTIONS; EMPIRICAL COMPARISONS; GRADIENT EQUATIONS; KERNEL DENSITIES; KERNEL DENSITY ESTIMATION; SECOND DERIVATIVES; SOURCE DISTRIBUTIONS;

EID: 61849125312     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.08.014     Document Type: Article
Times cited : (7)

References (44)
  • 1
    • 0344826104 scopus 로고    scopus 로고
    • A feasibility study for electromagnetic pollution monitoring by electromagnetic-source localization via neural independent component analysis
    • Albini L., Burrascano P., and Fiori S. A feasibility study for electromagnetic pollution monitoring by electromagnetic-source localization via neural independent component analysis. Neurocomputing 55 3-4 (2003) 451-468
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 451-468
    • Albini, L.1    Burrascano, P.2    Fiori, S.3
  • 2
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), MIT Press, Cambridge, MA
    • Amari S., Cichocki A., Yang H.H., et al. A new learning algorithm for blind signal separation. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Information Processing Systems vol. 8 (1996), MIT Press, Cambridge, MA 757-763
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 3
    • 33745219876 scopus 로고    scopus 로고
    • Spatio-temporal dynamics in fMRI recordings revealed with complex independent component analysis
    • Anemüller J., Duann J.R., Sejnowski T.J., and Makeig S. Spatio-temporal dynamics in fMRI recordings revealed with complex independent component analysis. Neurocomputing 69 13-15 (2006) 1502-1512
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1502-1512
    • Anemüller, J.1    Duann, J.R.2    Sejnowski, T.J.3    Makeig, S.4
  • 4
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias H. Independent factor analysis. Neural Comput. 11 4 (1999) 803-851
    • (1999) Neural Comput. , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 5
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach F.R., and Jordan M.I. Kernel independent component analysis. J. Mach. Learn. Res. 3 1 (2002) 1-48
    • (2002) J. Mach. Learn. Res. , vol.3 , Issue.1 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 6
    • 1242286406 scopus 로고    scopus 로고
    • Independent component analysis based on nonparametric density estimation
    • Boscolo R., Pan H., and Roychowdhury V.P. Independent component analysis based on nonparametric density estimation. IEEE Trans. Neural Networks 15 1 (2004) 55-65
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.1 , pp. 55-65
    • Boscolo, R.1    Pan, H.2    Roychowdhury, V.P.3
  • 8
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: statistical principles
    • Cardoso J.-F. Blind signal separation: statistical principles. Proc. IEEE 86 10 (1998) 2009-2025
    • (1998) Proc. IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 9
    • 0027812550 scopus 로고    scopus 로고
    • J.-F. Cardoso, A. Souloumiac, T. Paris, Blind beamforming for non-Gaussian signals, in: Radar and Signal Processing, IEE Proceedings F, 140, 1993, pp. 362-370.
    • J.-F. Cardoso, A. Souloumiac, T. Paris, Blind beamforming for non-Gaussian signals, in: Radar and Signal Processing, IEE Proceedings F, vol. 140, 1993, pp. 362-370.
  • 10
    • 32544446152 scopus 로고    scopus 로고
    • EEG classification using generative independent component analysis
    • Chiappa S., and Barber D. EEG classification using generative independent component analysis. Neurocomputing 69 7-9 (2006) 769-777
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 769-777
    • Chiappa, S.1    Barber, D.2
  • 12
    • 0034244729 scopus 로고    scopus 로고
    • Flexible independent component analysis
    • Choi S., Cichocki A., and Amari S. Flexible independent component analysis. J. VLSI Signal Process. 26 1-2 (2000) 25-38
    • (2000) J. VLSI Signal Process. , vol.26 , Issue.1-2 , pp. 25-38
    • Choi, S.1    Cichocki, A.2    Amari, S.3
  • 13
    • 27744549951 scopus 로고    scopus 로고
    • Blind source separation and independent component analysis: a review
    • Choi S., Cichocki A., Park H.M., and Lee S.Y. Blind source separation and independent component analysis: a review. Neural Inf. Process. Lett. Rev. 6 1 (2005) 1-57
    • (2005) Neural Inf. Process. Lett. Rev. , vol.6 , Issue.1 , pp. 1-57
    • Choi, S.1    Cichocki, A.2    Park, H.M.3    Lee, S.Y.4
  • 14
    • 33847401464 scopus 로고    scopus 로고
    • A relative trust-region algorithm for independent component analysis
    • Choi S., and Choi H. A relative trust-region algorithm for independent component analysis. Neurocomputing 70 7-9 (2007) 1502-1510
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1502-1510
    • Choi, S.1    Choi, H.2
  • 16
    • 0026188054 scopus 로고
    • Blind separation of sources, part II: problems statement
    • Comon P., Jutten C., and Herault J. Blind separation of sources, part II: problems statement. Signal Process. 24 1 (1991) 11-20
    • (1991) Signal Process. , vol.24 , Issue.1 , pp. 11-20
    • Comon, P.1    Jutten, C.2    Herault, J.3
  • 17
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept?. Signal Process. 36 3 (1994) 287-314
    • (1994) Signal Process. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 19
    • 0036120077 scopus 로고    scopus 로고
    • Hybrid independent component analysis by adaptive LUT activation function neurons
    • Fiori S. Hybrid independent component analysis by adaptive LUT activation function neurons. Neural Networks 15 1 (2002) 85-94
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 85-94
    • Fiori, S.1
  • 20
    • 0037379646 scopus 로고    scopus 로고
    • Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing
    • Fiori S. Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing. Neural Networks 16 3-4 (2003) 453-467
    • (2003) Neural Networks , vol.16 , Issue.3-4 , pp. 453-467
    • Fiori, S.1
  • 21
    • 0037843295 scopus 로고    scopus 로고
    • Numerical modeling for the localization and the assessment of electromagnetic field sources
    • Fiori S., Faba A., Albini L., Cardelli E., and Burrascano P. Numerical modeling for the localization and the assessment of electromagnetic field sources. IEEE Trans. Magn. 39 3 (2003) 1638-1641
    • (2003) IEEE Trans. Magn. , vol.39 , Issue.3 , pp. 1638-1641
    • Fiori, S.1    Faba, A.2    Albini, L.3    Cardelli, E.4    Burrascano, P.5
  • 22
    • 0043026768 scopus 로고    scopus 로고
    • Nonsymmetric PDF estimation by artificial neurons: application to statistical characterization of reinforced composites
    • Fiori S. Nonsymmetric PDF estimation by artificial neurons: application to statistical characterization of reinforced composites. IEEE Trans. Neural Networks 14 4 (2003) 959-962
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.4 , pp. 959-962
    • Fiori, S.1
  • 23
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 3 (1999) 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 25
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvärinen A., and Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput. 9 7 (1997) 1483-1492
    • (1997) Neural Comput. , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 26
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture
    • Jutten C., and Herault J. Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24 1 (1991) 1-10
    • (1991) Signal Process. , vol.24 , Issue.1 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 29
    • 33750096193 scopus 로고    scopus 로고
    • Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound
    • Koldovský Z., Tichavský P., and Oja E. Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound. IEEE Trans. Neural Networks 17 5 (2006) 1265-1277
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.5 , pp. 1265-1277
    • Koldovský, Z.1    Tichavský, P.2    Oja, E.3
  • 30
    • 85078284647 scopus 로고    scopus 로고
    • Independent component analysis of electroencephalographic data
    • Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), MIT Press, Cambridge, MA
    • Makeig S., Bell A.J., Jung T.P., and Sejnowski T.J. Independent component analysis of electroencephalographic data. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Information Processing Systems vol. 8 (1996), MIT Press, Cambridge, MA 145-151
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 145-151
    • Makeig, S.1    Bell, A.J.2    Jung, T.P.3    Sejnowski, T.J.4
  • 31
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixture of independent sources through a quasi-maximum likelihood approach
    • Pham D.T., and Garat P. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Signal Process. 45 7 (1997) 1712-1725
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.7 , pp. 1712-1725
    • Pham, D.T.1    Garat, P.2
  • 32
    • 0038132624 scopus 로고    scopus 로고
    • Information theoretic learning using Renyi's quadratic entropy
    • J.C. Principe, D. Xu, Information theoretic learning using Renyi's quadratic entropy, in: Proceedings of ICA'99, 1999, pp. 407-412.
    • (1999) Proceedings of ICA'99 , pp. 407-412
    • Principe, J.C.1    Xu, D.2
  • 34
    • 0002319720 scopus 로고
    • Kernel density estimation using the fast Fourier transform
    • Silverman B.W. Kernel density estimation using the fast Fourier transform. Appl. Stat. 31 (1982) 93-99
    • (1982) Appl. Stat. , vol.31 , pp. 93-99
    • Silverman, B.W.1
  • 35
    • 0026188053 scopus 로고
    • Blind separation of sources, part III: stability analysis
    • Sorouchyari F. Blind separation of sources, part III: stability analysis. Signal Process. 24 1 (1991) 21-29
    • (1991) Signal Process. , vol.24 , Issue.1 , pp. 21-29
    • Sorouchyari, F.1
  • 36
    • 61849089427 scopus 로고    scopus 로고
    • The EGLD ICA MATLAB package. URL
    • The EGLD ICA MATLAB package. URL: 〈http://wooster.hut.fi/statsp/papers/EGLD_ICA.zip〉.
  • 37
    • 61849156400 scopus 로고    scopus 로고
    • The FastICA MATLAB package. URL
    • The FastICA MATLAB package. URL: 〈http://www.cis.hut.fi/projects/ica/fastica/〉.
  • 38
    • 61849114723 scopus 로고    scopus 로고
    • The JADE MATLAB package. URL
    • The JADE MATLAB package. URL: 〈http://www.tsi.enst.fr/icacentral/Algos/cardoso/JnS.tar〉.
  • 39
    • 61849137850 scopus 로고    scopus 로고
    • The kernel ICA MATLAB package. URL
    • The kernel ICA MATLAB package. URL: 〈http://www.di.ens.fr/∼fbach/kernel-ica/kernel-ica1_2.tar.gz〉.
  • 40
    • 61849141307 scopus 로고    scopus 로고
    • The nonparametric MATLAB package. URL
    • The nonparametric MATLAB package. URL: 〈http://www.ee.ucla.edu/∼riccardo/ICA/〉.
  • 41
    • 61849140748 scopus 로고    scopus 로고
    • The relative Newton ICA MATLAB package. URL
    • The relative Newton ICA MATLAB package. URL: 〈http://iew3.technion.ac.il/∼mcib/relnwt021203n.zip〉.
  • 42
    • 61849140169 scopus 로고    scopus 로고
    • The Pearson ICA MATLAB package. URL
    • The Pearson ICA MATLAB package. URL: 〈http://signal.hut.fi/statsp/papers/Pearson_ICA.zip〉.
  • 43
    • 0345019851 scopus 로고    scopus 로고
    • Learned parametric mixture based ICA algorithm
    • Xu L., Cheung C., and Amari S. Learned parametric mixture based ICA algorithm. Neurocomputing 22 1-3 (1998) 69-80
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 69-80
    • Xu, L.1    Cheung, C.2    Amari, S.3
  • 44
    • 3042722835 scopus 로고    scopus 로고
    • Blind source separation with relative Newton method
    • Nara, Japan
    • M. Zibulevsky, Blind source separation with relative Newton method, in: Proceedings of the ICA, Nara, Japan, 2003, pp. 897-902.
    • (2003) Proceedings of the ICA , pp. 897-902
    • Zibulevsky, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.