메뉴 건너뛰기




Volumn 70, Issue 7-9, 2007, Pages 1502-1510

A relative trust-region algorithm for independent component analysis

Author keywords

Blind source separation; Gradient descent learning; Independent component analysis; Relative optimization; Trust region methods

Indexed keywords

ALGORITHMS; BLIND SOURCE SEPARATION; CONVERGENCE OF NUMERICAL METHODS; OPTIMIZATION;

EID: 33847401464     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.03.018     Document Type: Article
Times cited : (17)

References (21)
  • 1
    • 33847381277 scopus 로고    scopus 로고
    • P.A. Absil, C.G. Baker, K.A. Gallivan. Trust-region methods on Riemannian manifolds, Technical Report FSU-CSIT-04-13, School of Computational Science, Florida State University, 2004.
  • 2
    • 0001964033 scopus 로고    scopus 로고
    • Extended quasi-Newton method for the ICA
    • Helsinki, Finland
    • Akuzawa T. Extended quasi-Newton method for the ICA. Proceedings of the ICA. Helsinki, Finland (2000) 521-525
    • (2000) Proceedings of the ICA , pp. 521-525
    • Akuzawa, T.1
  • 3
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari S. Natural gradient works efficiently in learning. Neural Comput. 10 2 (1998) 251-276
    • (1998) Neural Comput. , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.1
  • 4
    • 0032187697 scopus 로고    scopus 로고
    • S. Amari, A. Cichocki, Adaptive blind signal processing-neural network approaches, Proceedings of the IEEE, Special Issue on Blind Identification and Estimation, vol. 86 (10), 1998, pp. 2026-2048.
  • 5
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), MIT Press, Cambridge
    • Amari S., Cichocki A., and Yang H.H. A new learning algorithm for blind signal separation. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Information Processing Systems vol. 8 (1996), MIT Press, Cambridge 757-763
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 6
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for source separation
    • Cardoso J.F. Infomax and maximum likelihood for source separation. IEEE Signal Process. Lett. 4 4 (1997) 112-114
    • (1997) IEEE Signal Process. Lett. , vol.4 , Issue.4 , pp. 112-114
    • Cardoso, J.F.1
  • 7
    • 0032298024 scopus 로고    scopus 로고
    • Learning in manifolds. the case of source separation
    • Portland, Oregon
    • Cardoso J.F. Learning in manifolds. the case of source separation. Proceedings of SSAP. Portland, Oregon (1998)
    • (1998) Proceedings of SSAP
    • Cardoso, J.F.1
  • 8
    • 0030417779 scopus 로고    scopus 로고
    • Equivariant adaptive source separation
    • Cardoso J.F., and Laheld B.H. Equivariant adaptive source separation. IEEE Trans. Signal Process. 44 12 (1996) 3017-3030
    • (1996) IEEE Trans. Signal Process. , vol.44 , Issue.12 , pp. 3017-3030
    • Cardoso, J.F.1    Laheld, B.H.2
  • 11
    • 0036125994 scopus 로고    scopus 로고
    • Equivariant nonstationary source separation
    • Choi S., Cichocki A., and Amari S. Equivariant nonstationary source separation. Neural Networks 15 1 (2002) 121-130
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 121-130
    • Choi, S.1    Cichocki, A.2    Amari, S.3
  • 12
    • 27744549951 scopus 로고    scopus 로고
    • Blind source separation and independent component analysis: a review
    • Choi S., Cichocki A., Park H.M., and Lee S.Y. Blind source separation and independent component analysis: a review. Neural Inf. Process. Lett. Rev. 6 1 (2005) 1-57
    • (2005) Neural Inf. Process. Lett. Rev. , vol.6 , Issue.1 , pp. 1-57
    • Choi, S.1    Cichocki, A.2    Park, H.M.3    Lee, S.Y.4
  • 14
    • 21844443579 scopus 로고    scopus 로고
    • Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial
    • Fiori S. Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial. J. Mach. Learn. Res. 6 (2005) 743-781
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 743-781
    • Fiori, S.1
  • 15
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 3 (1999) 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 18
    • 0034207888 scopus 로고    scopus 로고
    • A unifying information-theoretic framework for independent component analysis
    • Lee T.W., Girolami M., Bell A., and Sejnowski T. A unifying information-theoretic framework for independent component analysis. Int. J. Math. Comput. Modeling 39 11 (2000) 1-21
    • (2000) Int. J. Math. Comput. Modeling , vol.39 , Issue.11 , pp. 1-21
    • Lee, T.W.1    Girolami, M.2    Bell, A.3    Sejnowski, T.4
  • 19
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics 18 1 (2002) 51-60
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 51-60
    • Liebermeister, W.1
  • 21
    • 3042722835 scopus 로고    scopus 로고
    • Blind source separation with relative Newton method
    • Nara, Japan
    • Zibulevsky M. Blind source separation with relative Newton method. Proceedings of the ICA. Nara, Japan (2003) 897-902
    • (2003) Proceedings of the ICA , pp. 897-902
    • Zibulevsky, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.