메뉴 건너뛰기




Volumn 64, Issue 1-4 SPEC. ISS., 2005, Pages 211-221

Online adaptive policies for ensemble classifiers

Author keywords

Boosting; Ensembles; Mixture of experts; Neural networks; Q learning; Reinforcement learning; Supervised learning

Indexed keywords

BENCHMARKING; DATABASE SYSTEMS; LEARNING ALGORITHMS; NEURAL NETWORKS;

EID: 15844429144     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.11.031     Document Type: Article
Times cited : (23)

References (16)
  • 1
    • 38949096100 scopus 로고
    • Reinforcement learning with modular neural networks for control
    • URL citeseer.nj.nec.com/anderson94reinforcement.html
    • C. Anderson, Z. Hong, Reinforcement learning with modular neural networks for control (1994). URL citeseer.nj.nec.com/ anderson94reinforcement.html
    • (1994)
    • Anderson, C.1    Hong, Z.2
  • 2
    • 0003272616 scopus 로고    scopus 로고
    • Reinforcement learning in POMDP's via direct gradient ascent
    • Morgan Kaufmann, San Francisco, CA URL citeseer.nj.nec.com/ baxter00reinforcement.html
    • J. Baxter P.L. Bartlett Reinforcement learning in POMDP's via direct gradient ascent Proceedings of the 17th International Conference on Machine Learning Morgan Kaufmann, San Francisco, CA 2000 41-48 URL citeseer.nj.nec.com/baxter00reinforcement.html
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 41-48
    • Baxter, J.1    Bartlett, P.L.2
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • C. Blake, C. Merz, UCI repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html (1998).
    • (1998)
    • Blake, C.1    Merz, C.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • URL citeseer.nj.nec.com/breiman96bagging.html
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123-140 URL citeseer.nj.nec.com/breiman96bagging.html
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0004198448 scopus 로고    scopus 로고
    • Arcing the edge
    • Tech. Report Department of Statistics, University of California, Berkeley, CA URL citeseer.nj.nec.com/breiman97arcing.html
    • L. Breiman, Arcing the edge, Tech. Report, Department of Statistics, University of California, Berkeley, CA, 1997. URL citeseer.nj.nec.com/ breiman97arcing.html
    • (1997)
    • Breiman, L.1
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. System Sci. 55 1 1997 119-139
    • (1997) J. Comput. System Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M.I. Jordan R.A. Jacobs Hierarchical mixtures of experts and the EM algorithm Neural Comput. 6 2 1994 181-214
    • (1994) Neural Comput. , vol.6 , Issue.2 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 11
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • Y. Li P.M. Long The relaxed online maximum margin algorithm Mach. Learn. 46 1/3 2002 361
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 361
    • Li, Y.1    Long, P.M.2
  • 12
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • L. Mason P.L. Bartlett J. Baxter Improved generalization through explicit optimization of margins Mach. Learn. 38 3 2000 243
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 243
    • Mason, L.1    Bartlett, P.L.2    Baxter, J.3
  • 13
    • 0002595663 scopus 로고    scopus 로고
    • Boosting the margin a new explanation for the effectiveness of voting methods
    • Morgan Kaufmann San Francisco, CA URL citeseer.nj.nec.com/ schapire97boosting.html
    • R.E. Schapire Y. Freund P. Bartlett W.S. Lee Boosting the margin a new explanation for the effectiveness of voting methods Proceedings of the 14th International Conference on Machine Learning 1997 Morgan Kaufmann San Francisco, CA 322-330 URL citeseer.nj.nec.com/schapire97boosting.html
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 322-330
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.