메뉴 건너뛰기




Volumn 29, Issue 5, 2009, Pages 1212-1221

The transition of closely opposed lesions to double-strand breaks during long-patch base excision repair is prevented by the coordinated action of DNA polymerase δ and Rad27/Fen1

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEMENTARY DNA; DNA DIRECTED DNA POLYMERASE DELTA; ENDONUCLEASE; MESYLIC ACID METHYL ESTER; RAD27 PROTEIN; UNCLASSIFIED DRUG; DNA DIRECTED DNA POLYMERASE GAMMA; FLAP ENDONUCLEASE; RAD27 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 61749094513     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.01499-08     Document Type: Article
Times cited : (34)

References (61)
  • 1
    • 0034431467 scopus 로고    scopus 로고
    • Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction
    • Ayala-Torres, S., Y. Chen, T. Svoboda, J. Rosenblatt, and B. Van Houten. 2000. Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 22:135-147.
    • (2000) Methods , vol.22 , pp. 135-147
    • Ayala-Torres, S.1    Chen, Y.2    Svoboda, T.3    Rosenblatt, J.4    Van Houten, B.5
  • 2
    • 0035954737 scopus 로고    scopus 로고
    • RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
    • Bae, S. H., K. H. Bae, J. A. Kim, and Y. S. Seo. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456-461.
    • (2001) Nature , vol.412 , pp. 456-461
    • Bae, S.H.1    Bae, K.H.2    Kim, J.A.3    Seo, Y.S.4
  • 3
    • 10944251591 scopus 로고    scopus 로고
    • Repair and genetic consequences of endogenous DNA base damage in mammalian cells
    • Barnes, D. E., and T. Lindahl. 2004. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38:445-476.
    • (2004) Annu. Rev. Genet , vol.38 , pp. 445-476
    • Barnes, D.E.1    Lindahl, T.2
  • 4
    • 0032980426 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis
    • Bennett, R. A. 1999. The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis. Mol. Cell. Biol. 19:1800-1809.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 1800-1809
    • Bennett, R.A.1
  • 5
    • 0025288239 scopus 로고
    • Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents
    • Beranek, D. T. 1990. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat. Res. 231:11-30.
    • (1990) Mutat. Res , vol.231 , pp. 11-30
    • Beranek, D.T.1
  • 6
    • 0000513835 scopus 로고
    • Spliced early mRNAs of simian virus 40
    • Berk, A. J., and P. A. Sharp. 1978. Spliced early mRNAs of simian virus 40. Proc. Natl. Acad. Sci. USA 75:1274-1278.
    • (1978) Proc. Natl. Acad. Sci. USA , vol.75 , pp. 1274-1278
    • Berk, A.J.1    Sharp, P.A.2
  • 7
    • 0035178567 scopus 로고    scopus 로고
    • Base excision repair processing of radiation-induced clustered DNA lesions
    • Blaisdell, J. O., L. Harrison, and S. S. Wallace. 2001. Base excision repair processing of radiation-induced clustered DNA lesions. Radiat. Prot. Dosimetry 97:25-31.
    • (2001) Radiat. Prot. Dosimetry , vol.97 , pp. 25-31
    • Blaisdell, J.O.1    Harrison, L.2    Wallace, S.S.3
  • 8
    • 0037007223 scopus 로고    scopus 로고
    • Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA
    • Bochkareva, E., S. Korolev, S. P. Lees-Miller, and A. Bochkarev. 2002. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J. 21:1855-1863.
    • (2002) EMBO J , vol.21 , pp. 1855-1863
    • Bochkareva, E.1    Korolev, S.2    Lees-Miller, S.P.3    Bochkarev, A.4
  • 9
    • 0348140585 scopus 로고    scopus 로고
    • Abasic sites in DNA: Repair and biological consequences in Saccharomyces cerevisiae
    • Boiteux, S., and M. Guillet. 2004. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amsterdam) 3:1-12.
    • (2004) DNA Repair (Amsterdam) , vol.3 , pp. 1-12
    • Boiteux, S.1    Guillet, M.2
  • 10
    • 33645215616 scopus 로고    scopus 로고
    • Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
    • Budd, M. E., C. C. Reis, S. Smith, K. Myung, and J. L. Campbell. 2006. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 26:2490-2500.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 2490-2500
    • Budd, M.E.1    Reis, C.C.2    Smith, S.3    Myung, K.4    Campbell, J.L.5
  • 11
    • 0032584599 scopus 로고    scopus 로고
    • Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta
    • Burgers, P. M., and K. J. Gerik. 1998. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273:19756-19762.
    • (1998) J. Biol. Chem , vol.273 , pp. 19756-19762
    • Burgers, P.M.1    Gerik, K.J.2
  • 13
    • 0034697371 scopus 로고    scopus 로고
    • Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins
    • David-Cordonnier, M. H., J. Laval, and P. O'Neill. 2000. Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins. J. Biol. Chem. 275:11865-11873.
    • (2000) J. Biol. Chem , vol.275 , pp. 11865-11873
    • David-Cordonnier, M.H.1    Laval, J.2    O'Neill, P.3
  • 14
    • 13744259832 scopus 로고    scopus 로고
    • Processing of a complex multiply damaged DNA site by human cell extracts and purified repair proteins
    • Eot-Houllier, G., S. Eon-Marchais, D. Gasparutto, and E. Sage. 2005. Processing of a complex multiply damaged DNA site by human cell extracts and purified repair proteins. Nucleic Acids Res. 33:260-271.
    • (2005) Nucleic Acids Res , vol.33 , pp. 260-271
    • Eot-Houllier, G.1    Eon-Marchais, S.2    Gasparutto, D.3    Sage, E.4
  • 15
    • 33847625356 scopus 로고    scopus 로고
    • Base damage and single-strand break repair: Mechanisms and functional significance of short- and long-patch repair subpathways
    • Fortini, P., and E. Dogliotti. 2007. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amsterdam) 6:398-409.
    • (2007) DNA Repair (Amsterdam) , vol.6 , pp. 398-409
    • Fortini, P.1    Dogliotti, E.2
  • 16
    • 25444484099 scopus 로고    scopus 로고
    • How the cell deals with DNA nicks
    • Garg, P., and P. M. Burgers. 2005. How the cell deals with DNA nicks. Cell Cycle 4:221-224.
    • (2005) Cell Cycle , vol.4 , pp. 221-224
    • Garg, P.1    Burgers, P.M.2
  • 17
    • 8644285427 scopus 로고    scopus 로고
    • Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication
    • Garg, P., C. M. Stith, N. Sabouri, E. Johansson, and P. M. Burgers. 2004. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 18:2764-2773.
    • (2004) Genes Dev , vol.18 , pp. 2764-2773
    • Garg, P.1    Stith, C.M.2    Sabouri, N.3    Johansson, E.4    Burgers, P.M.5
  • 18
    • 0033548096 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair
    • Gary, R., K. Kim, H. L. Cornelius, M. S. Park, and Y. Matsumoto. 1999. Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J. Biol. Chem. 274:4354-4363.
    • (1999) J. Biol. Chem , vol.274 , pp. 4354-4363
    • Gary, R.1    Kim, K.2    Cornelius, H.L.3    Park, M.S.4    Matsumoto, Y.5
  • 20
    • 0025826579 scopus 로고
    • The repair of double-strand breaks and S1 nuclease-sensitive sites can be monitored chromosome-specifically in Saccharomyces cerevisiae using pulse-field gel electrophoresis
    • Geigl, E. M., and F. Eckardt-Schupp. 1991. The repair of double-strand breaks and S1 nuclease-sensitive sites can be monitored chromosome-specifically in Saccharomyces cerevisiae using pulse-field gel electrophoresis. Mol. Microbiol. 5:1615-1620.
    • (1991) Mol. Microbiol , vol.5 , pp. 1615-1620
    • Geigl, E.M.1    Eckardt-Schupp, F.2
  • 21
    • 0025826315 scopus 로고
    • Repair of gamma ray-induced S1 nuclease hypersensitive sites in yeast depends on homologous mitotic recombination and a RAD18-dependent function
    • Geigl, E. M., and F. Eckardt-Schupp. 1991. Repair of gamma ray-induced S1 nuclease hypersensitive sites in yeast depends on homologous mitotic recombination and a RAD18-dependent function. Curr. Genet. 20:33-37.
    • (1991) Curr. Genet , vol.20 , pp. 33-37
    • Geigl, E.M.1    Eckardt-Schupp, F.2
  • 22
    • 37149027578 scopus 로고    scopus 로고
    • Processing of DNA damage clusters in human cells: Current status of knowledge
    • Georgakilas, A. G. 2008. Processing of DNA damage clusters in human cells: current status of knowledge. Mol. Biosyst. 4:30-35.
    • (2008) Mol. Biosyst , vol.4 , pp. 30-35
    • Georgakilas, A.G.1
  • 23
    • 0032584658 scopus 로고    scopus 로고
    • Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta
    • Gerik, K. J., X. Li, A. Pautz, and P. M. Burgers. 1998. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273:19747-19755.
    • (1998) J. Biol. Chem , vol.273 , pp. 19747-19755
    • Gerik, K.J.1    Li, X.2    Pautz, A.3    Burgers, P.M.4
  • 24
    • 15544386652 scopus 로고    scopus 로고
    • The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer
    • Gibbs, P. E., J. McDonald, R. Woodgate, and C. W. Lawrence. 2005. The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer. Genetics 169:575-582.
    • (2005) Genetics , vol.169 , pp. 575-582
    • Gibbs, P.E.1    McDonald, J.2    Woodgate, R.3    Lawrence, C.W.4
  • 25
    • 35549010590 scopus 로고    scopus 로고
    • Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork
    • Hanna, M., L. G. Ball, A. H. Tong, C. Boone, and W. Xiao. 2007. Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork. Mutat. Res. 625:164-176.
    • (2007) Mutat. Res , vol.625 , pp. 164-176
    • Hanna, M.1    Ball, L.G.2    Tong, A.H.3    Boone, C.4    Xiao, W.5
  • 27
    • 0032519310 scopus 로고    scopus 로고
    • Multiply damaged sites in DNA: Interactions with Escherichia coli endonucleases III and VIII
    • Harrison, L., Z. Hatahet, A. A. Purmal, and S. S. Wallace. 1998. Multiply damaged sites in DNA: interactions with Escherichia coli endonucleases III and VIII. Nucleic Acids Res. 26:932-941.
    • (1998) Nucleic Acids Res , vol.26 , pp. 932-941
    • Harrison, L.1    Hatahet, Z.2    Purmal, A.A.3    Wallace, S.S.4
  • 28
    • 0028245269 scopus 로고
    • Recombinant replication protein A: Expression, complex formation, and functional characterization
    • Henricksen, L. A., C. B. Umbricht, and M. S. Wold. 1994. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269:11121-11132.
    • (1994) J. Biol. Chem , vol.269 , pp. 11121-11132
    • Henricksen, L.A.1    Umbricht, C.B.2    Wold, M.S.3
  • 29
    • 0033729983 scopus 로고    scopus 로고
    • POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway
    • Huang, M. E., A. de Calignon, A. Nicolas, and F. Galibert. 2000. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr. Genet. 38:178-187.
    • (2000) Curr. Genet , vol.38 , pp. 178-187
    • Huang, M.E.1    de Calignon, A.2    Nicolas, A.3    Galibert, F.4
  • 30
    • 0036242094 scopus 로고    scopus 로고
    • Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway
    • Huang, M. E., A. G. Rio, M. D. Galibert, and F. Galibert. 2002. Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics 160:1409-1422.
    • (2002) Genetics , vol.160 , pp. 1409-1422
    • Huang, M.E.1    Rio, A.G.2    Galibert, M.D.3    Galibert, F.4
  • 31
    • 0345826100 scopus 로고    scopus 로고
    • The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding
    • Johansson, E., P. Garg, and P. M. Burgers. 2004. The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem. 279:1907-1915.
    • (2004) J. Biol. Chem , vol.279 , pp. 1907-1915
    • Johansson, E.1    Garg, P.2    Burgers, P.M.3
  • 33
    • 0030861915 scopus 로고    scopus 로고
    • DNA glycosylases in the base excision repair of DNA
    • Krokan, H. E., R. Standal, and G. Slupphaug. 1997. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325:1-16.
    • (1997) Biochem. J , vol.325 , pp. 1-16
    • Krokan, H.E.1    Standal, R.2    Slupphaug, G.3
  • 34
    • 0030692134 scopus 로고    scopus 로고
    • An interaction between DNA ligase I and proliferating cell nuclear antigen: Implications for Okazaki fragment synthesis and joining
    • Levin, D. S., W. Bai, N. Yao, M. O'Donnell, and A. E. Tomkinson. 1997. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94:12863-12868.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 12863-12868
    • Levin, D.S.1    Bai, W.2    Yao, N.3    O'Donnell, M.4    Tomkinson, A.E.5
  • 35
    • 0342350255 scopus 로고    scopus 로고
    • Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair
    • Levin, D. S., A. E. McKenna, T. A. Motycka, Y. Matsumoto, and A. E. Tomkinson. 2000. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Curr. Biol. 10:919-922.
    • (2000) Curr. Biol , vol.10 , pp. 919-922
    • Levin, D.S.1    McKenna, A.E.2    Motycka, T.A.3    Matsumoto, Y.4    Tomkinson, A.E.5
  • 36
    • 0029092897 scopus 로고
    • Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen
    • Li, X., J. Li, J. Harrington, M. R. Lieber, and P. M. Burgers. 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270:22109-22112.
    • (1995) J. Biol. Chem , vol.270 , pp. 22109-22112
    • Li, X.1    Li, J.2    Harrington, J.3    Lieber, M.R.4    Burgers, P.M.5
  • 37
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709-715.
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 38
    • 0015504253 scopus 로고
    • Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid
    • Lindahl, T., and A. Andersson. 1972. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11:3618-3623.
    • (1972) Biochemistry , vol.11 , pp. 3618-3623
    • Lindahl, T.1    Andersson, A.2
  • 39
    • 4644289815 scopus 로고    scopus 로고
    • Efficiency of repair of an abasic site within DNA clustered damage sites by mammalian cell nuclear extracts
    • Lomax, M. E., S. Cunniffe, and P. O'Neill. 2004. Efficiency of repair of an abasic site within DNA clustered damage sites by mammalian cell nuclear extracts. Biochemistry 43:11017-11026.
    • (2004) Biochemistry , vol.43 , pp. 11017-11026
    • Lomax, M.E.1    Cunniffe, S.2    O'Neill, P.3
  • 40
    • 22244474639 scopus 로고    scopus 로고
    • Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks
    • Lundin, C., M. North, K. Erixon, K. Walters, D. Jenssen, A. S. Goldman, and T. Helleday. 2005. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res. 33:3799-3811.
    • (2005) Nucleic Acids Res , vol.33 , pp. 3799-3811
    • Lundin, C.1    North, M.2    Erixon, K.3    Walters, K.4    Jenssen, D.5    Goldman, A.S.6    Helleday, T.7
  • 41
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard, J. R., S. Jain, M. Yamaguchi, and J. E. Haber. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820-823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 42
    • 41949120904 scopus 로고    scopus 로고
    • Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis
    • Ma, W., M. A. Resnick, and D. A. Gordenin. 2008. Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis. Nucleic Acids Res. 36:1836-1846.
    • (2008) Nucleic Acids Res , vol.36 , pp. 1836-1846
    • Ma, W.1    Resnick, M.A.2    Gordenin, D.A.3
  • 43
    • 0032126647 scopus 로고    scopus 로고
    • DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: Identification of a common targeting mechanism for the assembly of replication factories
    • Montecucco, A., R. Rossi, D. S. Levin, R. Gary, M. S. Park, T. A. Motycka, G. Ciarrocchi, A. Villa, G. Biamonti, and A. E. Tomkinson. 1998. DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. EMBO J. 17:3786-3795.
    • (1998) EMBO J , vol.17 , pp. 3786-3795
    • Montecucco, A.1    Rossi, R.2    Levin, D.S.3    Gary, R.4    Park, M.S.5    Motycka, T.A.6    Ciarrocchi, G.7    Villa, A.8    Biamonti, G.9    Tomkinson, A.E.10
  • 44
    • 0033152195 scopus 로고    scopus 로고
    • Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues
    • Nakamura, J., and J. A. Swenberg. 1999. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59:2522-2526.
    • (1999) Cancer Res , vol.59 , pp. 2522-2526
    • Nakamura, J.1    Swenberg, J.A.2
  • 45
    • 0034014664 scopus 로고    scopus 로고
    • Preparation of a methylated DNA standard, and its stability on storage
    • Osborne, M. R., and D. H. Phillips. 2000. Preparation of a methylated DNA standard, and its stability on storage. Chem. Res. Toxicol. 13:257-261.
    • (2000) Chem. Res. Toxicol , vol.13 , pp. 257-261
    • Osborne, M.R.1    Phillips, D.H.2
  • 46
    • 0031821009 scopus 로고    scopus 로고
    • Preferential accumulation of single-stranded regions in telomeres of human fibroblasts
    • Petersen, S., G. Saretzki, and T. von Zglinicki. 1998. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp. Cell Res. 239:152-160.
    • (1998) Exp. Cell Res , vol.239 , pp. 152-160
    • Petersen, S.1    Saretzki, G.2    von Zglinicki, T.3
  • 47
    • 35348826722 scopus 로고    scopus 로고
    • Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion
    • Regulus, P., B. Duroux, P. A. Bayle, A. Favier, J. Cadet, and J. L. Ravanat. 2007. Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc. Natl. Acad. Sci. USA 104:14032-14037.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 14032-14037
    • Regulus, P.1    Duroux, B.2    Bayle, P.A.3    Favier, A.4    Cadet, J.5    Ravanat, J.L.6
  • 48
    • 0017255643 scopus 로고
    • The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control
    • Resnick, M. A., and P. Martin. 1976. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143:119-129.
    • (1976) Mol. Gen. Genet , vol.143 , pp. 119-129
    • Resnick, M.A.1    Martin, P.2
  • 49
    • 0023621076 scopus 로고
    • Induction and repair of closely opposed pyrimidine dimers in Saccharomyces cerevisiae
    • Reynolds, R. J. 1987. Induction and repair of closely opposed pyrimidine dimers in Saccharomyces cerevisiae. Mutat. Res. 184:197-207.
    • (1987) Mutat. Res , vol.184 , pp. 197-207
    • Reynolds, R.J.1
  • 50
    • 0034077890 scopus 로고    scopus 로고
    • Radiation-induced heat-labile sites that convert into DNA double-strand breaks
    • Rydberg, B. 2000. Radiation-induced heat-labile sites that convert into DNA double-strand breaks. Radiat. Res. 153:805-812.
    • (2000) Radiat. Res , vol.153 , pp. 805-812
    • Rydberg, B.1
  • 51
    • 0037449724 scopus 로고    scopus 로고
    • Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death
    • Santos, J. H., L. Hunakova, Y. Chen, C. Bortner, and B. Van Houten. 2003. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J. Biol. Chem. 278:1728-1734.
    • (2003) J. Biol. Chem , vol.278 , pp. 1728-1734
    • Santos, J.H.1    Hunakova, L.2    Chen, Y.3    Bortner, C.4    Van Houten, B.5
  • 52
    • 33744721699 scopus 로고    scopus 로고
    • Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells
    • Santos, J. H., J. N. Meyer, B. S. Mandavilli, and B. Van Houten. 2006. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 314:183-199.
    • (2006) Methods Mol. Biol , vol.314 , pp. 183-199
    • Santos, J.H.1    Meyer, J.N.2    Mandavilli, B.S.3    Van Houten, B.4
  • 53
    • 0035111895 scopus 로고    scopus 로고
    • Recent progress in the biology, chemistry and structural biology of DNA glycosylases
    • Scharer, O. D., and J. Jiricny. 2001. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23:270-281.
    • (2001) Bioessays , vol.23 , pp. 270-281
    • Scharer, O.D.1    Jiricny, J.2
  • 55
    • 57749100294 scopus 로고    scopus 로고
    • Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis
    • Stith, C. M., J. Sterling, M. A. Resnick, D. A. Gordenin, and P. M. Burgers. 2008. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem. 283:34129-34140.
    • (2008) J. Biol. Chem , vol.283 , pp. 34129-34140
    • Stith, C.M.1    Sterling, J.2    Resnick, M.A.3    Gordenin, D.A.4    Burgers, P.M.5
  • 56
    • 0042316990 scopus 로고    scopus 로고
    • Double-strand DNA break formation mediated by flap endonuclease-1
    • Vispe, S., E. L. Ho, T. M. Yung, and M. S. Satoh. 2003. Double-strand DNA break formation mediated by flap endonuclease-1. J. Biol. Chem. 278:35279-35285.
    • (2003) J. Biol. Chem , vol.278 , pp. 35279-35285
    • Vispe, S.1    Ho, E.L.2    Yung, T.M.3    Satoh, M.S.4
  • 57
    • 0036628726 scopus 로고    scopus 로고
    • Biological consequences of free radical-damaged DNA bases
    • Wallace, S. S. 2002. Biological consequences of free radical-damaged DNA bases. Free Radic. Biol. Med. 33:1-14.
    • (2002) Free Radic. Biol. Med , vol.33 , pp. 1-14
    • Wallace, S.S.1
  • 58
    • 0022527878 scopus 로고
    • Ionizing radiation induced DNA damage: Identities and DNA repair
    • Ward, J. F. 1986. Ionizing radiation induced DNA damage: identities and DNA repair. Basic Life. Sci. 38:135-138.
    • (1986) Basic Life. Sci , vol.38 , pp. 135-138
    • Ward, J.F.1
  • 59
    • 0019413225 scopus 로고
    • Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals
    • Ward, J. F. 1981. Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals. Radiat. Res. 86:185-195.
    • (1981) Radiat. Res , vol.86 , pp. 185-195
    • Ward, J.F.1
  • 60
    • 33847007529 scopus 로고    scopus 로고
    • The mechanics of base excision repair, and its relationship to aging and disease
    • Wilson, D. M., III, and V. A. Bohr. 2007. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amsterdam) 6:544-559.
    • (2007) DNA Repair (Amsterdam) , vol.6 , pp. 544-559
    • Wilson III, D.M.1    Bohr, V.A.2
  • 61
    • 0033557310 scopus 로고    scopus 로고
    • Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA
    • Wu, X., and Z. Wang. 1999. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA. Nucleic Acids Res. 27:956-962.
    • (1999) Nucleic Acids Res , vol.27 , pp. 956-962
    • Wu, X.1    Wang, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.