-
1
-
-
20044372231
-
-
Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Phys. Rev. B 2005, 71, 115426.
-
(2005)
Phys. Rev. B
, vol.71
, pp. 115426
-
-
Jones, M.1
Engtrakul, C.2
Metzger, W.K.3
Ellingson, R.J.4
Nozik, A.J.5
Heben, M.J.6
Rumbles, G.7
-
2
-
-
34250180965
-
-
Cognet, L.; Tsyboulski, D. A.; Rocha, J. D. R.; Doyle, C. D.; Tour, J. M.; Weisman, R. B. Science 2007, 316, 1465.
-
(2007)
Science
, vol.316
, pp. 1465
-
-
Cognet, L.1
Tsyboulski, D.A.2
Rocha, J.D.R.3
Doyle, C.D.4
Tour, J.M.5
Weisman, R.B.6
-
3
-
-
18144372755
-
-
Qiu, X. H.; Freitag, M.; Perebeinos, V.; Avouris, P. Nano Lett. 2005, 5, 749.
-
(2005)
Nano Lett
, vol.5
, pp. 749
-
-
Qiu, X.H.1
Freitag, M.2
Perebeinos, V.3
Avouris, P.4
-
4
-
-
0034670840
-
-
Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Phys. Rev. B 2000, 62, 15764.
-
(2000)
Phys. Rev. B
, vol.62
, pp. 15764
-
-
Beard, M.C.1
Turner, G.M.2
Schmuttenmaer, C.A.3
-
5
-
-
0035894244
-
-
Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. J. Appl. Phys. 2001, 90, 5915.
-
(2001)
J. Appl. Phys
, vol.90
, pp. 5915
-
-
Beard, M.C.1
Turner, G.M.2
Schmuttenmaer, C.A.3
-
6
-
-
47649085054
-
-
Blackburn, J.; Barnes, T.; Beard, M. C.; Kim, Y.; Engtrakul, C.; McDonald, T.; Courts, T.; Heben, M. ACS Nano 2008, 2, 1266.
-
(2008)
ACS Nano
, vol.2
, pp. 1266
-
-
Blackburn, J.1
Barnes, T.2
Beard, M.C.3
Kim, Y.4
Engtrakul, C.5
McDonald, T.6
Courts, T.7
Heben, M.8
-
7
-
-
33846116009
-
-
Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Nat. Nanotechnol 2006, 1, 60.
-
(2006)
Nat. Nanotechnol
, vol.1
, pp. 60
-
-
Arnold, M.S.1
Green, A.A.2
Hulvat, J.F.3
Stupp, S.I.4
Hersam, M.C.5
-
9
-
-
0000565972
-
-
Honold, A.; Schultheis, L.; Kuhl, J.; Tu, C. W. Phys. Rev. B 1989, 40, 6442.
-
(1989)
Phys. Rev. B
, vol.40
, pp. 6442
-
-
Honold, A.1
Schultheis, L.2
Kuhl, J.3
Tu, C.W.4
-
11
-
-
20244372128
-
-
Dettlaff-Weglikowska, U.; Skakalova, V.; Graupner, R.; Jhang, S. H.; Kim, B. H.; Lee, H. J.; Ley, L.; Park, Y. W.; Berber, S.; Tomanek, D.; Roth, S. J. Am. Chem. Soc. 2005, 127, 5125.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 5125
-
-
Dettlaff-Weglikowska, U.1
Skakalova, V.2
Graupner, R.3
Jhang, S.H.4
Kim, B.H.5
Lee, H.J.6
Ley, L.7
Park, Y.W.8
Berber, S.9
Tomanek, D.10
Roth, S.11
-
12
-
-
0037079196
-
-
Turner, G. M.; Beard, M. C.; Schmuttenmaer, C. A. J. Phys. Chem. B 2002, 106, 11716.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 11716
-
-
Turner, G.M.1
Beard, M.C.2
Schmuttenmaer, C.A.3
-
13
-
-
84868900247
-
-
The frequency-dependent complex-conductivity for a truly free carrier is markedly different than that of a bound carrier, since the conductivity of a completely free carrier should increase with decreasing frequency and exhibit a maximum value in σ′ at dc. 1
-
The frequency-dependent complex-conductivity for a truly "free" carrier is markedly different than that of a bound carrier, since the conductivity of a completely free carrier should increase with decreasing frequency and exhibit a maximum value in σ′ at dc. 1.
-
-
-
-
14
-
-
54349088253
-
-
Barnes, T. M.; Blackburn, J. L.; van de Lagemaat, J.; Courts, T. J.; Heben, M. J. ACS Nano 2008, 2, 1968.
-
(2008)
ACS Nano
, vol.2
, pp. 1968
-
-
Barnes, T.M.1
Blackburn, J.L.2
van de Lagemaat, J.3
Courts, T.J.4
Heben, M.J.5
-
15
-
-
79956005654
-
-
Jeon, T. I.; Kim, K. J.; Kang, C.; Oh, S. J.; Son, J. H.; An, K. H.; Bae, D. J.; Lee, Y. H. Appl. Phys. Lett. 2002, 80, 3403.
-
(2002)
Appl. Phys. Lett
, vol.80
, pp. 3403
-
-
Jeon, T.I.1
Kim, K.J.2
Kang, C.3
Oh, S.J.4
Son, J.H.5
An, K.H.6
Bae, D.J.7
Lee, Y.H.8
-
16
-
-
33846858172
-
-
Kang, C.; Maeng, I. H.; Oh, S. J.; Lim, S. C.; An, K. H.; Lee, Y. H.; Son, J. H. Phys. Rev. B 2007, 75, 085410.
-
(2007)
Phys. Rev. B
, vol.75
, pp. 085410
-
-
Kang, C.1
Maeng, I.H.2
Oh, S.J.3
Lim, S.C.4
An, K.H.5
Lee, Y.H.6
Son, J.H.7
-
17
-
-
84868901044
-
-
While the frequency-dependence of the conductivity measured in this study is similar to that reported in other studies the magnitude is not. In ref 16 the real part of the conductivity is ∼5 ω-1 cm-1 at 1 THz for a 17 μm thick film while in this study we find ∼65 ω-1 cm-1 (hydrazine treated s-SWNT film) at 1 THz for a 50 nm thick film. We must conclude that there are significant differences between our sample and those studied elsewhere and stress that samples separated by density gradient separation, such as those studied here, are among the most pure, optimal samples for studying the conductive properties truly representative of the single-walled carbon nanotubes
-
-1 (hydrazine treated s-SWNT film) at 1 THz for a 50 nm thick film. We must conclude that there are significant differences between our sample and those studied elsewhere and stress that samples separated by density gradient separation, such as those studied here, are among the most pure, optimal samples for studying the conductive properties truly representative of the single-walled carbon nanotubes.
-
-
-
-
18
-
-
34247876154
-
-
Hua, X.; Anlage, S. M.; Liangbing, H.; Gruner, G. Appl. Phys. Lett. 2007, 90, 183119.
-
(2007)
Appl. Phys. Lett
, vol.90
, pp. 183119
-
-
Hua, X.1
Anlage, S.M.2
Liangbing, H.3
Gruner, G.4
-
21
-
-
33646745152
-
-
Cooke, D. G.; MacDonald, A. N.; Hryciw, A.; Wang, J.; Li, Q.; Meldrum, A.; Hegmann, F. A. Phys. Rev. B 2006, 73, 193311.
-
(2006)
Phys. Rev. B
, vol.73
, pp. 193311
-
-
Cooke, D.G.1
MacDonald, A.N.2
Hryciw, A.3
Wang, J.4
Li, Q.5
Meldrum, A.6
Hegmann, F.A.7
-
22
-
-
34548764318
-
-
Walther, M.; Cooke, D. G.; Sherstan, C.; Hajar, M.; Freeman, M. R.; Hegmann, F. A. Phys. Rev. B 2007, 76, 125408.
-
(2007)
Phys. Rev. B
, vol.76
, pp. 125408
-
-
Walther, M.1
Cooke, D.G.2
Sherstan, C.3
Hajar, M.4
Freeman, M.R.5
Hegmann, F.A.6
-
23
-
-
17744394725
-
-
Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. J. Am. Chem. Soc. 2005, 127, 5990.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 5990
-
-
Bekyarova, E.1
Itkis, M.E.2
Cabrera, N.3
Zhao, B.4
Yu, A.P.5
Gao, J.B.6
Haddon, R.C.7
-
24
-
-
61649118466
-
-
Metal-enriched films show similar trends compared to the DOS calculation; see Supporting Information
-
Metal-enriched films show similar trends compared to the DOS calculation; see Supporting Information.
-
-
-
-
26
-
-
32644464260
-
-
Perfetti, L.; Kampfrath, T.; Schapper, F.; Hagen, A.; Hertel, T.; Aguirre, C. M.; Desjardins, P.; Mattel, R.; Frischkorn, C.; Wolf, M. Phys. Rev. Lett. 2006, 96, 027401.
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 027401
-
-
Perfetti, L.1
Kampfrath, T.2
Schapper, F.3
Hagen, A.4
Hertel, T.5
Aguirre, C.M.6
Desjardins, P.7
Mattel, R.8
Frischkorn, C.9
Wolf, M.10
-
27
-
-
36849019997
-
-
Kampfrath, T.; Perfetti, L.; von Volkmann, K.; Aguirre, C. M.; Desjardins, P.; Martel, R.; Frischkorn, C.; Wolf, M. Phys. Status Solidi B 2007, 244, 3950.
-
(2007)
Phys. Status Solidi B
, vol.244
, pp. 3950
-
-
Kampfrath, T.1
Perfetti, L.2
von Volkmann, K.3
Aguirre, C.M.4
Desjardins, P.5
Martel, R.6
Frischkorn, C.7
Wolf, M.8
-
28
-
-
0035957725
-
-
Ouyang, M.; Huang, J. L.; Cheung, C. L.; Lieber, C. M. Science 2001, 292, 702.
-
(2001)
Science
, vol.292
, pp. 702
-
-
Ouyang, M.1
Huang, J.L.2
Cheung, C.L.3
Lieber, C.M.4
-
29
-
-
0542426920
-
-
Delaney, P.; Choi, H. J.; Ihm, J.; Louie, S. G.; Cohen, M. L. Nature 1998, 391, 466.
-
(1998)
Nature
, vol.391
, pp. 466
-
-
Delaney, P.1
Choi, H.J.2
Ihm, J.3
Louie, S.G.4
Cohen, M.L.5
-
30
-
-
0000519628
-
-
Maarouf, A. A.; Kane, C. L.; Mele, E. J. Phys. Rev. B 2000, 61, 11156.
-
(2000)
Phys. Rev. B
, vol.61
, pp. 11156
-
-
Maarouf, A.A.1
Kane, C.L.2
Mele, E.J.3
-
31
-
-
33344460802
-
-
Zhou, W.; Vavro, J.; Nemes, N. M.; Fischer, J. E.; Borondics, F.; Kamaras, K.; Tanner, D. B. Phys. Rev. B 2005, 71, 205423.
-
(2005)
Phys. Rev. B
, vol.71
, pp. 205423
-
-
Zhou, W.1
Vavro, J.2
Nemes, N.M.3
Fischer, J.E.4
Borondics, F.5
Kamaras, K.6
Tanner, D.B.7
-
34
-
-
28844496389
-
-
Kampfrath, T.; Perfetti, L.; Schapper, F.; Frischkorn, C.; Wolf, M. Phys. Rev. Lett. 2005, 95, 187403.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 187403
-
-
Kampfrath, T.1
Perfetti, L.2
Schapper, F.3
Frischkorn, C.4
Wolf, M.5
-
36
-
-
61649112509
-
-
While the cooling rate may be faster than our instrument response function, we would still expect to see a different amplitude for faster cooling rates even if our measured responses were dominated by electron cooling. This is not observed
-
While the cooling rate may be faster than our instrument response function, we would still expect to see a different amplitude for faster cooling rates even if our measured responses were dominated by electron cooling. This is not observed.
-
-
-
|