메뉴 건너뛰기




Volumn 45, Issue 1, 2009, Pages 63-76

Predicting the probability of survival in intensive care unit patients from a small number of variables and training examples

Author keywords

Intensive care; Mortality risk prediction; Reduced number of variables and cases; Support vector machines

Indexed keywords

ACUTE PHYSIOLOGY AND CHRONIC HEALTH EVALUATIONS; CLINICAL ROUTINES; CORONARY DISEASE; CRITICALLY-ILL PATIENTS; DATA SETS; DIAGNOSTIC FEATURES; INTENSIVE CARE; LEARNING METHODS; LOGISTIC REGRESSIONS; MONITORING DEVICES; MORTALITY RISK PREDICTION; PREDICTION PERFORMANCE; PREDICTION SYSTEMS; PROBABILITY OF SURVIVALS; RE CALIBRATIONS; REDUCED NUMBER OF VARIABLES AND CASES; SCORING FUNCTIONS; SCORING SYSTEMS; SECOND LEVELS; SURVIVAL PROBABILITIES; TRAINING EXAMPLES;

EID: 60349126981     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.11.005     Document Type: Article
Times cited : (18)

References (26)
  • 1
    • 0035116748 scopus 로고    scopus 로고
    • Economics of end-life-care in the intensive care unit
    • Provonost P., and Angus D. Economics of end-life-care in the intensive care unit. Crit Care Med 29 Suppl (2001) 46-51
    • (2001) Crit Care Med , vol.29 , Issue.SUPPL , pp. 46-51
    • Provonost, P.1    Angus, D.2
  • 2
    • 0027422556 scopus 로고
    • Mortality probability models (MPM II) based on an international cohort of intensive care unit patients
    • Lemeshow S., Teres D., Klar J., Avrunin J.S., Gehlbach S.H., and Rapoport J. Mortality probability models (MPM II) based on an international cohort of intensive care unit patients. J Am Med Assoc 270 20 (1993) 2478-2486
    • (1993) J Am Med Assoc , vol.270 , Issue.20 , pp. 2478-2486
    • Lemeshow, S.1    Teres, D.2    Klar, J.3    Avrunin, J.S.4    Gehlbach, S.H.5    Rapoport, J.6
  • 3
    • 0035070978 scopus 로고    scopus 로고
    • Prognostic models in medicine-AI and statistical approaches
    • Abu-Hanna A., and Lucas P. Prognostic models in medicine-AI and statistical approaches. Methods Inform Med 40 (2001) 1-5
    • (2001) Methods Inform Med , vol.40 , pp. 1-5
    • Abu-Hanna, A.1    Lucas, P.2
  • 5
    • 0026409568 scopus 로고
    • The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults
    • Knaus W., Draper E., Wagner D., Zimmerman J., Bergner M., Bastos P., et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100 (1991) 1619-1636
    • (1991) Chest , vol.100 , pp. 1619-1636
    • Knaus, W.1    Draper, E.2    Wagner, D.3    Zimmerman, J.4    Bergner, M.5    Bastos, P.6
  • 7
    • 0033791715 scopus 로고    scopus 로고
    • Automated computerized intensive care unit severity of illness measure in the Department of Veterans Affairs: Preliminary results
    • Render M, Welsh D, Kollef M, Lott III J, Hui S, Weinberger M, et al. Automated computerized intensive care unit severity of illness measure in the Department of Veterans Affairs: preliminary results. Crit Care Med 2000;28(10):3540-6.
    • (2000) Crit Care Med , vol.28 , Issue.10 , pp. 3540-3546
    • Render, M.1    Welsh, D.2    Kollef, M.3    Lott III, J.4    Hui, S.5    Weinberger, M.6
  • 8
    • 41649120320 scopus 로고    scopus 로고
    • Veterans affairs intensive care unit risk adjustment model: Validation, updating, recalibration
    • Render M, Deddens J, Freyberg R, Almenoff P, Connors Jr A, Wagner D, et al. Veterans affairs intensive care unit risk adjustment model: validation, updating, recalibration. Crit Care Med 2008;36(4):1031-42.
    • (2008) Crit Care Med , vol.36 , Issue.4 , pp. 1031-1042
    • Render, M.1    Deddens, J.2    Freyberg, R.3    Almenoff, P.4    Connors Jr, A.5    Wagner, D.6
  • 11
    • 36048958298 scopus 로고    scopus 로고
    • Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality
    • Matheny M., Resnic F., Arora N., and Ohno-Machado L. Effects of SVM parameter optimization on discrimination and calibration for post-procedural PCI mortality. J Biomed Inform 40 6 (2007) 688-697
    • (2007) J Biomed Inform , vol.40 , Issue.6 , pp. 688-697
    • Matheny, M.1    Resnic, F.2    Arora, N.3    Ohno-Machado, L.4
  • 12
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J., and McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 1 (1982) 29-36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 13
    • 60349131549 scopus 로고    scopus 로고
    • Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola A, Bartlett P, Schölkopf B, Schuurmans, editors. Advances in large margin classifiers. Cambridge, Massachusetts, USA: MIT Press; 2000. p. 61-74.
    • Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola A, Bartlett P, Schölkopf B, Schuurmans, editors. Advances in large margin classifiers. Cambridge, Massachusetts, USA: MIT Press; 2000. p. 61-74.
  • 15
  • 16
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier G. Verification of forecasts expressed in terms of probability. Monthly Weather Rev 78 (1950) 1-3
    • (1950) Monthly Weather Rev , vol.78 , pp. 1-3
    • Brier, G.1
  • 17
    • 84897965802 scopus 로고    scopus 로고
    • AUC optimization vs. error rate minimization
    • Thrun S, Saul L, Schölkopf B, editors, Cambridge, Massachusetts, USA: MIT Press;
    • Cortes C, Mohri M. AUC optimization vs. error rate minimization. In: Thrun S, Saul L, Schölkopf B, editors. Advances in neural information processing systems 16. Cambridge, Massachusetts, USA: MIT Press; 2004.
    • (2004) Advances in neural information processing systems , vol.16
    • Cortes, C.1    Mohri, M.2
  • 18
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • Smola A, Bartlett P, Schölkopf B, Schuurmans D, editors, Cambridge, Massachusetts, USA: MIT Press;
    • Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D, editors. Advances in large margin classifiers. Cambridge, Massachusetts, USA: MIT Press; 2000. p. 115-32.
    • (2000) Advances in large margin classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 19
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • Zaïane OR, Goebel R, Hand D, Keim D, Ng R, editors, ACM Press, New York, USA;
    • Joachims T. Optimizing search engines using clickthrough data. In: Zaïane OR, Goebel R, Hand D, Keim D, Ng R, editors. Proceedings of the ACM SIGKDD conference on knowledge discovery and data mining (KDD). ACM Press, New York, USA; 2002. p. 133-42.
    • (2002) Proceedings of the ACM SIGKDD conference on knowledge discovery and data mining (KDD) , pp. 133-142
    • Joachims, T.1
  • 21
    • 33644858420 scopus 로고    scopus 로고
    • Mortality assessment in intensive care units via adverse events using artificial neural networks
    • Silva A., Cortez P., Santos M., Gomes L., and Neves J. Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med 36 3 (2006) 223-234
    • (2006) Artif Intell Med , vol.36 , Issue.3 , pp. 223-234
    • Silva, A.1    Cortez, P.2    Santos, M.3    Gomes, L.4    Neves, J.5
  • 22
    • 33947717367 scopus 로고    scopus 로고
    • Identification of high-risk subgroups in very elderly intensive care unit patients
    • de Rooij S., Abu-Hanna A., Levi M., and de Jonge E. Identification of high-risk subgroups in very elderly intensive care unit patients. Crit Care 11 2 (2007) 33
    • (2007) Crit Care , vol.11 , Issue.2 , pp. 33
    • de Rooij, S.1    Abu-Hanna, A.2    Levi, M.3    de Jonge, E.4
  • 23
    • 39749192581 scopus 로고    scopus 로고
    • Applying PRIM (patient rule induction method) and logistic regression for selecting high-risk subgroups in very elderly ICU patients
    • Nannings B., Abu-Hanna A., and de Jonge E. Applying PRIM (patient rule induction method) and logistic regression for selecting high-risk subgroups in very elderly ICU patients. Int J Med Inform 77 4 (2008) 272-279
    • (2008) Int J Med Inform , vol.77 , Issue.4 , pp. 272-279
    • Nannings, B.1    Abu-Hanna, A.2    de Jonge, E.3
  • 25
    • 44649088319 scopus 로고    scopus 로고
    • Trust region Newton method for logistic regression
    • April
    • Lin CJ, Weng RC, Keerthi SS. Trust region Newton method for logistic regression. J Mach Learn Res 2008;9(April):627-50.
    • (2008) J Mach Learn Res , Issue.9 , pp. 627-650
    • Lin, C.J.1    Weng, R.C.2    Keerthi, S.S.3
  • 26
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7 (2006) 1-30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.