-
1
-
-
0842309885
-
-
10.1126/science.1093164
-
A. Majumdar, Science 303, 777 (2004). 10.1126/science.1093164
-
(2004)
Science
, vol.303
, pp. 777
-
-
Majumdar, A.1
-
2
-
-
0037289374
-
-
10.1179/095066003225010182
-
G. Chen, M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003). 10.1179/095066003225010182
-
(2003)
Int. Mater. Rev.
, vol.48
, pp. 45
-
-
Chen, G.1
Dresselhaus, M.S.2
Dresselhaus, G.3
Fleurial, J.-P.4
Caillat, T.5
-
4
-
-
38049143961
-
-
10.1038/nature06381
-
A. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature (London) 451, 163 (2008). 10.1038/nature06381
-
(2008)
Nature (London)
, vol.451
, pp. 163
-
-
Hochbaum, A.1
Chen, R.2
Delgado, R.D.3
Liang, W.4
Garnett, E.C.5
Najarian, M.6
Majumdar, A.7
Yang, P.8
-
5
-
-
38049148246
-
-
10.1038/nature06458
-
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard III, and J. R. Heath, Nature (London) 451, 168 (2008). 10.1038/nature06458
-
(2008)
Nature (London)
, vol.451
, pp. 168
-
-
Boukai, A.I.1
Bunimovich, Y.2
Tahir-Kheli, J.3
Yu, J.-K.4
Goddard III, W.A.5
Heath, J.R.6
-
6
-
-
60349099110
-
-
10.1021/nl073231d
-
T. T. M. Vo, A. J. Williamson, V. Lordi, and G. Galli, Nano Lett. 8, 1111 (2008). 10.1021/nl073231d
-
(2008)
Nano Lett.
, vol.8
, pp. 1111
-
-
Vo, T.T.M.1
Williamson, A.J.2
Lordi, V.3
Galli, G.4
-
8
-
-
35448989286
-
-
10.1103/PhysRevB.76.155313
-
P. G. Murphy and J. E. Moore, Phys. Rev. B 76, 155313 (2007). 10.1103/PhysRevB.76.155313
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155313
-
-
Murphy, P.G.1
Moore, J.E.2
-
9
-
-
1042288208
-
-
10.1103/PhysRevB.68.245406
-
N. Mingo and L. Yang, Phys. Rev. B 68, 245406 (2003). 10.1103/PhysRevB.68.245406
-
(2003)
Phys. Rev. B
, vol.68
, pp. 245406
-
-
Mingo, N.1
Yang, L.2
-
11
-
-
38849136468
-
-
10.1103/PhysRevB.77.085301
-
A. Lherbier, M. P. Persson, Y.-M. Niquet, F. Triozon, and S. Roche, Phys. Rev. B 77, 085301 (2008). 10.1103/PhysRevB.77.085301
-
(2008)
Phys. Rev. B
, vol.77
, pp. 085301
-
-
Lherbier, A.1
Persson, M.P.2
Niquet, Y.-M.3
Triozon, F.4
Roche, S.5
-
14
-
-
33845519735
-
-
10.1103/PhysRevB.74.245313
-
T. Markussen, R. Rurali, M. Brandbyge, and A.-P. Jauho, Phys. Rev. B 74, 245313 (2006). 10.1103/PhysRevB.74.245313
-
(2006)
Phys. Rev. B
, vol.74
, pp. 245313
-
-
Markussen, T.1
Rurali, R.2
Brandbyge, M.3
Jauho, A.-P.4
-
15
-
-
34548058091
-
-
10.1103/PhysRevLett.99.076803
-
T. Markussen, R. Rurali, A.-P. Jauho, and M. Brandbyge, Phys. Rev. Lett. 99, 076803 (2007). 10.1103/PhysRevLett.99.076803
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 076803
-
-
Markussen, T.1
Rurali, R.2
Jauho, A.-P.3
Brandbyge, M.4
-
16
-
-
0003422041
-
-
2nd ed., Springer Solid State Series Vol. Springer, Berlin
-
H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd ed., Springer Solid State Series Vol. 123 (Springer, Berlin, 2008).
-
(2008)
Quantum Kinetics in Transport and Optics of Semiconductors
, vol.123
-
-
Haug, H.1
Jauho, A.-P.2
-
17
-
-
7544236735
-
-
10.1103/PhysRevB.38.9902
-
J. Tersoff, Phys. Rev. B 38, 9902 (1988). 10.1103/PhysRevB.38.9902
-
(1988)
Phys. Rev. B
, vol.38
, pp. 9902
-
-
Tersoff, J.1
-
19
-
-
60349092584
-
-
In a typical calculation, the separation is 20 Å.
-
In a typical calculation, the separation is 20 Å.
-
-
-
-
20
-
-
60349098328
-
-
This corresponds to a supercell length of 1.9 nm for a 〈110〉 wire and 4.7 nm for a 〈111〉 wire.
-
This corresponds to a supercell length of 1.9 nm for a 〈110〉 wire and 4.7 nm for a 〈111〉 wire.
-
-
-
-
22
-
-
21044456044
-
-
10.1109/TED.2005.848077
-
Y. Zheng, C. Riva, R. Lake, K. Alam, T. B. Boykin, and G. Klimeck, IEEE Trans. Electron Devices 52, 1097 (2005). 10.1109/TED.2005.848077
-
(2005)
IEEE Trans. Electron Devices
, vol.52
, pp. 1097
-
-
Zheng, Y.1
Riva, C.2
Lake, R.3
Alam, K.4
Boykin, T.B.5
Klimeck, G.6
-
24
-
-
60349129146
-
-
See, e.g., Chap. 12 in Ref..
-
See, e.g., Chap. 12 in Ref..
-
-
-
-
25
-
-
34547244017
-
-
10.1103/PhysRevE.75.061128
-
J.-S. Wang, N. Zeng, J. Wang, and C.-K. Gan, Phys. Rev. E 75, 061128 (2007). 10.1103/PhysRevE.75.061128
-
(2007)
Phys. Rev. e
, vol.75
, pp. 061128
-
-
Wang, J.-S.1
Zeng, N.2
Wang, J.3
Gan, C.-K.4
-
26
-
-
33745625862
-
-
10.1103/PhysRevLett.96.255503
-
T. Yamamoto and K. Watanabe, Phys. Rev. Lett. 96, 255503 (2006). 10.1103/PhysRevLett.96.255503
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 255503
-
-
Yamamoto, T.1
Watanabe, K.2
-
27
-
-
33748138231
-
-
10.1103/PhysRevB.74.125402
-
N. Mingo, Phys. Rev. B 74, 125402 (2006). 10.1103/PhysRevB.74.125402
-
(2006)
Phys. Rev. B
, vol.74
, pp. 125402
-
-
Mingo, N.1
-
28
-
-
50949088755
-
-
10.1007/s10825-007-0156-4
-
T. Markussen, R. Rurali, A.-P. Jauho, and M. Brandbyge, J. Comput. Electron. 7, 324 (2008). 10.1007/s10825-007-0156-4
-
(2008)
J. Comput. Electron.
, vol.7
, pp. 324
-
-
Markussen, T.1
Rurali, R.2
Jauho, A.-P.3
Brandbyge, M.4
-
30
-
-
0000868971
-
-
10.1103/PhysRevB.33.551
-
U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986). 10.1103/PhysRevB.33. 551
-
(1986)
Phys. Rev. B
, vol.33
, pp. 551
-
-
Sivan, U.1
Imry, Y.2
-
33
-
-
60349108412
-
-
10.1021/nl801409m
-
R. Rurali, T. Markussen, J. Suñé, M. Brandbyge, and A.-P. Jauho, Nano Lett. 8, 2825 (2008). 10.1021/nl801409m
-
(2008)
Nano Lett.
, vol.8
, pp. 2825
-
-
Rurali, R.1
Markussen, T.2
Suñé, J.3
Brandbyge, M.4
Jauho, A.-P.5
-
34
-
-
60349105788
-
-
When changing the wire diameter we keep the surface-vacancy concentration constant. The number of vacancies listed in Fig. 7 corresponds to D=20 Å. In general, Nvac (D) = Nvac (20 Å) D/20 Å.
-
When changing the wire diameter we keep the surface-vacancy concentration constant. The number of vacancies listed in Fig. 7 corresponds to D=20 Å. In general, Nvac (D) = Nvac (20 Å) D/20 Å.
-
-
-
-
35
-
-
0242595934
-
-
10.1103/PhysRevB.68.113308
-
N. Mingo, Phys. Rev. B 68, 113308 (2003). 10.1103/PhysRevB.68.113308
-
(2003)
Phys. Rev. B
, vol.68
, pp. 113308
-
-
Mingo, N.1
|