메뉴 건너뛰기




Volumn 18, Issue 3, 2009, Pages 342-375

Opportunities for multiagent systems and multiagent reinforcement learning in traffic control

Author keywords

Coordination of agents; Game theory; Multiagent learning; Multiagent systems; Reinforcement learning; Traffic signal control

Indexed keywords


EID: 59849097978     PISSN: 13872532     EISSN: 15737454     Source Type: Journal    
DOI: 10.1007/s10458-008-9062-9     Document Type: Article
Times cited : (216)

References (92)
  • 2
    • 4544367194 scopus 로고    scopus 로고
    • Towards truly agent-based traffic and mobility simulations
    • Tambe (Eds.), Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multi Agent Systems, AAMAS, July 2004 New York: IEEE Computer Society
    • Balmer, M., Cetin, N., Nagel, K., & Raney, B. (2004). Towards truly agent-based traffic and mobility simulations. In N. Jennings, C. Sierra, L. Sonenberg, & M. Tambe (Eds.), Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multi Agent Systems, AAMAS, July 2004 (Vol. 1, pp. 60-67). New York: IEEE Computer Society.
    • (2004) N. Jennings, C. Sierra, L. Sonenberg, & M , vol.1 , pp. 60-67
    • Balmer, M.1    Cetin, N.2    Nagel, K.3    Raney, B.4
  • 5
    • 33644809850 scopus 로고    scopus 로고
    • A distributed approach for coordination of traffic signal agents
    • 1
    • A.L.C. Bazzan 2005 A distributed approach for coordination of traffic signal agents Autonomous Agents and Multiagent Systems 10 1 131 164
    • (2005) Autonomous Agents and Multiagent Systems , vol.10 , pp. 131-164
    • Bazzan, A.L.C.1
  • 6
    • 59849127148 scopus 로고    scopus 로고
    • Learning in groups of traffic signals
    • Technical report
    • Bazzan, A. L. C., de Oliveira, D., & da Silva, B. C. (2008). Learning in groups of traffic signals. Technical report, UFRGS.
    • (2008) UFRGS
    • Bazzana.l.c.deoliveirad1    Dasilvab.c2
  • 9
    • 24344437754 scopus 로고    scopus 로고
    • Case studies on the Braess paradox: Simulating route recommendation and learning in abstract and microscopic models
    • 4
    • A.L.C. Bazzan F. Klügl 2005 Case studies on the Braess paradox: Simulating route recommendation and learning in abstract and microscopic models Transportation Research C 13 4 299 319
    • (2005) Transportation Research C , vol.13 , pp. 299-319
    • Bazzan, A.L.C.1    Klügl, F.2
  • 12
    • 84947917117 scopus 로고    scopus 로고
    • Agents in traffic modelling-From reactive to social behavior, Advances in artificial intelligence
    • Berlin/Heidelberg: Springer. Extended version appeared in Proceedings of the U.K. Special Interest Group on Multi-Agent Systems (UKMAS), Bristol, UK.
    • Bazzan, A. L. C., Wahle, J., & Klügl, F. (1999). Agents in traffic modelling-From reactive to social behavior. In Advances in artificial intelligence, Lecture notes in artificial intelligence (Vol. 1701, pp. 303-306). Berlin/Heidelberg: Springer. Extended version appeared in Proceedings of the U.K. Special Interest Group on Multi-Agent Systems (UKMAS), Bristol, UK.
    • (1999) Lecture Notes in Artificial Intelligence , vol.1701 , pp. 303-306
    • Bazzan, A.L.C.1    Wahle, J.2    Klügl, F.3
  • 14
    • 34250513249 scopus 로고
    • Über ein Paradoxon aus der Verkehrsplanung
    • D. Braess 1968 über ein Paradoxon aus der Verkehrsplanung Unternehmensforschung 12 258
    • (1968) Unternehmensforschung , vol.12 , pp. 258
    • Braess, D.1
  • 18
    • 0346325848 scopus 로고    scopus 로고
    • Distributed learning agents in urban traffic control
    • Portugal Beja
    • Camponogara E. and Kraus W. (2003). Distributed learning agents in urban traffic control. In: Moura-Pires, F. and Abreu, S. (eds) EPIA., pp 324-335. Portugal, Beja
    • (2003) EPIA , pp. 324-335
    • Camponogara, E.1    Kraus Jr., W.2    Moura-Pires, F.3    Abreu, S.4
  • 20
    • 0001405969 scopus 로고    scopus 로고
    • Statistical physics of vehicular traffic and some related systems
    • D. Chowdhury L. Santen A. Schadschneider 2000 Statistical physics of vehicular traffic and some related systems Physics Reports 329 199 329
    • (2000) Physics Reports , vol.329 , pp. 199-329
    • Chowdhury, D.1    Santen, L.2    Schadschneider, A.3
  • 21
    • 0001538517 scopus 로고    scopus 로고
    • Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods
    • 2
    • D. Chowdhury A. Schadschneider 1999 Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods Physical Review E 59 2 R1311 R1314
    • (1999) Physical Review e , vol.59
    • Chowdhury, D.1    Schadschneider, A.2
  • 24
    • 0036470455 scopus 로고    scopus 로고
    • A multivariable regulator approach to traffic-responsive network-wide signal control
    • 2
    • C. Diakaki M. Papageorgiou K. Aboudolas 2002 A multivariable regulator approach to traffic-responsive network-wide signal control Control Engineering Practice 10 2 183 195
    • (2002) Control Engineering Practice , vol.10 , pp. 183-195
    • Diakaki, C.1    Papageorgiou, M.2    Aboudolas, K.3
  • 30
    • 59849102339 scopus 로고    scopus 로고
    • How to combine reactivity and anticipation: The case of conflicts resolution in a simulated road traffic
    • New York: Springer
    • Elhadouaj, S., Drogoul, A., & Espié, S. (2000). How to combine reactivity and anticipation: The case of conflicts resolution in a simulated road traffic. In Proceedings of the Multiagent Based Simulation (MABS) (pp. 82-96). New York: Springer.
    • (2000) Proceedings of the Multiagent Based Simulation (MABS) , pp. 82-96
    • Elhadouaj Drogoul, S.A.1    Espié, S.2
  • 32
    • 84996602328 scopus 로고
    • OPAC-A demand-responsive strategy for traffic signal control
    • N.H. Gartner 1983 OPAC-A demand-responsive strategy for traffic signal control Transportation Research Record 906 75 81
    • (1983) Transportation Research Record , vol.906 , pp. 75-81
    • Gartner, N.H.1
  • 33
    • 33645140954 scopus 로고    scopus 로고
    • Self-organizing traffic lights
    • 1
    • C. Gershenson 2005 Self-organizing traffic lights Complex Systems 16 1 29 53
    • (2005) Complex Systems , vol.16 , pp. 29-53
    • Gershenson, C.1
  • 34
    • 0029666892 scopus 로고    scopus 로고
    • The organization of work in social insect colonies
    • D. Gordon 1996 The organization of work in social insect colonies Nature 380 121 124
    • (1996) Nature , vol.380 , pp. 121-124
    • Gordon, D.1
  • 37
    • 0032585550 scopus 로고    scopus 로고
    • Coherent moving states in highway traffic
    • D. Helbing B.A. Huberman 1998 Coherent moving states in highway traffic Nature 396 738
    • (1998) Nature , vol.396 , pp. 738
    • Helbing, D.1    Huberman, B.A.2
  • 39
    • 0000929496 scopus 로고    scopus 로고
    • Multiagent reinforcement learning: Theoretical framework and an algorithm
    • Los Altos: Morgan Kaufmann.
    • Hu, J., & Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical framework and an algorithm. In Proceedings of the 15th International Conference on Machine Learning (pp. 242-250). Los Altos: Morgan Kaufmann.
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 242-250
    • Hu, J.1    Wellman, M.P.2
  • 40
    • 85040270263 scopus 로고
    • SCOOT-A traffic responsive method of coordinating signals
    • Transport and Road Research Laboratory, Berkshire, 1981
    • Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Winton, R. I. (1981). SCOOT-A traffic responsive method of coordinating signals. TRRL Lab. Report 1014, Transport and Road Research Laboratory, Berkshire, 1981.
    • (1981) TRRL Lab. Report , vol.1014
    • Hunt, P.B.1    Robertson, D.I.2    Bretherton, R.D.3    Winton, R.I.4
  • 44
    • 0141837987 scopus 로고    scopus 로고
    • Multi-agent fuzzy signal control based on real-time simulation
    • 5
    • I. Kosonen 2003 Multi-agent fuzzy signal control based on real-time simulation Transportation Research C 11 5 389 403
    • (2003) Transportation Research C , vol.11 , pp. 389-403
    • Kosonen, I.1
  • 46
    • 85149834820 scopus 로고
    • Markov games as a framework for multi-agent reinforcement learning
    • New Brunswick, NJ: Morgan Kaufmann
    • Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Proceedings of the 11th International Conference on Machine Learning, ML (pp. 157-163). New Brunswick, NJ: Morgan Kaufmann.
    • (1994) Proceedings of the 11th International Conference on Machine Learning, ML , pp. 157-163
    • Littman, M.L.1
  • 49
    • 0027684215 scopus 로고
    • Prioritized sweeping: Reinforcement learning with less data and less time
    • A.W. Moore C.G. Atkeson 1993 Prioritized sweeping: Reinforcement learning with less data and less time Machine Learning 13 103 130
    • (1993) Machine Learning , vol.13 , pp. 103-130
    • Moore, A.W.1    Atkeson, C.G.2
  • 50
    • 0008379580 scopus 로고
    • Synchronizing traffic signals for maximal bandwidth
    • J.T. Morgan J.D.C. Little 1964 Synchronizing traffic signals for maximal bandwidth Operations Research 12 897 912
    • (1964) Operations Research , vol.12 , pp. 897-912
    • Morgan, J.T.1    Little, J.D.C.2
  • 51
  • 64
    • 0027027910 scopus 로고
    • Regulation of division of labor in insect societies
    • G.E. Robinson 1992 Regulation of division of labor in insect societies Annual Review of Entomology 37 637 665
    • (1992) Annual Review of Entomology , vol.37 , pp. 637-665
    • Robinson, G.E.1
  • 70
    • 34147161536 scopus 로고    scopus 로고
    • If multi-agent learning is the answer, what is the question?
    • 7
    • Y. Shoham R. Powers T. Grenager 2007 If multi-agent learning is the answer, what is the question? Artificial Intelligence 171 7 365 377
    • (2007) Artificial Intelligence , vol.171 , pp. 365-377
    • Shoham, Y.1    Powers, R.2    Grenager, T.3
  • 73
    • 84873471733 scopus 로고    scopus 로고
    • Reinforcement learning of traffic light controllers adapting to traffic congestion
    • K. Verbeeck, K. Tuyls, A. Nowé, B. Manderick, & B. Kuijpers (Eds.) October 2005 Brussels, Belgium: Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten
    • Steingrover, M., Schouten, R., Peelen, S., Nijhuis, E., & Bakker, B. (2005). Reinforcement learning of traffic light controllers adapting to traffic congestion. In K. Verbeeck, K. Tuyls, A. Nowé, B. Manderick, & B. Kuijpers (Eds.), Proceedings of the 17th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2005), October 2005 (pp. 216-223). Brussels, Belgium: Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten.
    • (2005) Proceedings of the 17th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2005) , pp. 216-223
    • Steingrover, M.1    Schouten, R.2    Peelen, S.3    Nijhuis, E.4    Bakker, B.5
  • 76
    • 85132026293 scopus 로고
    • Integrated architectures for learning, planning, and reacting based on approximating dynamic programming
    • Austin, Texas
    • Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the 7th International Conference on Machine Learning (pp. 216-224). Austin, Texas.
    • (1990) Proceedings of the 7th International Conference on Machine Learning , pp. 216-224
    • Sutton, R.S.1
  • 77
    • 85152198941 scopus 로고
    • Multi-agent reinforcement learning: Independent vs. cooperative agents
    • June 1993 Los Altos, CA: Morgan Kaufmann
    • Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the 10th International Conference on Machine Learning (ICML 1993), June 1993 (pp. 330-337). Los Altos, CA: Morgan Kaufmann.
    • (1993) Proceedings of the 10th International Conference on Machine Learning (ICML 1993) , pp. 330-337
    • Tan, M.1
  • 78
    • 0004184763 scopus 로고
    • TRANSYT-7F. Transportation Research Center, University of Florida
    • TRANSYT-7F. (1988). TRANSYT-7F user's manual. Transportation Research Center, University of Florida.
    • (1988) . TRANSYT-7F User's Manual
  • 79
    • 84899955497 scopus 로고    scopus 로고
    • Aligning social welfare and agent preferences to alleviate traffic congestion
    • L. Padgham, D. Parkes, J. Müller, & S. Parsons (Eds.) May 2008 Estoril: IFAAMAS
    • Tumer, K., Welch, Z. T., & Agogino, A. (2008). Aligning social welfare and agent preferences to alleviate traffic congestion. In L. Padgham, D. Parkes, J. Müller, & S. Parsons (Eds.), Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems, May 2008 (pp. 655-662). Estoril: IFAAMAS.
    • (2008) Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems , pp. 655-662
    • Tumer, K.1    Welch, Z.T.2    Agogino, A.3
  • 83
    • 34249064148 scopus 로고    scopus 로고
    • What evolutionary game theory tells us about multiagent learning
    • 7
    • K. Tuyls S. Parsons 2007 What evolutionary game theory tells us about multiagent learning Artificial Intelligence 171 7 406 416
    • (2007) Artificial Intelligence , vol.171 , pp. 406-416
    • Tuyls, K.1    Parsons, S.2
  • 85
    • 58049194007 scopus 로고    scopus 로고
    • Multi-agent reinforcement learning in stochastic games and multi-stage games
    • D. K. et al. (Eds.) Berlin: Springer
    • Verbeeck, K., Nowé, A., Peeters, M., & Tuyls, K. (2005). Multi-agent reinforcement learning in stochastic games and multi-stage games. In D. K. et al. (Eds.), Adaptive agents and MAS II, LNAI (Vol. 3394, pp. 275-294). Berlin: Springer.
    • (2005) Adaptive Agents and MAS II, LNAI , vol.3394 , pp. 275-294
    • Verbeeck Nowé Peeters, A.K.M.1    Tuyls, K.2
  • 90


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.