메뉴 건너뛰기




Volumn 74, Issue 2, 2009, Pages 344-352

Prediction of turn types in protein structure by machine-learning classifiers

Author keywords

Bioinformatics; Kernel function; Prediction; Probabilistic neural network; Secondary structure; Self organizing map; Support vector machine; Turn classification

Indexed keywords

AMINO ACID; PROTEIN;

EID: 59449110365     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.22164     Document Type: Article
Times cited : (20)

References (43)
  • 1
    • 23144436397 scopus 로고    scopus 로고
    • BhairPred: Prediction of β-hairpins in a protein from multiple alignment information using ANN and SVM techniques
    • Kumar M, Bhasin M, Natt NK, Raghava GPS. BhairPred: prediction of β-hairpins in a protein from multiple alignment information using ANN and SVM techniques. Nucleic Acids Res 2005;33:W154- W159.
    • (2005) Nucleic Acids Res , vol.33
    • Kumar, M.1    Bhasin, M.2    Natt, N.K.3    Raghava, G.P.S.4
  • 2
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 3
    • 0034327349 scopus 로고    scopus 로고
    • Prediction of tight turns and their types in proteins
    • Chou KC. Prediction of tight turns and their types in proteins. Anal Biochem 2000;286:1-16.
    • (2000) Anal Biochem , vol.286 , pp. 1-16
    • Chou, K.C.1
  • 4
    • 0021779081 scopus 로고    scopus 로고
    • Rose GD, Gierasch LM, Smith JA. Turns in peptides and proteins. Adv Protein Chem 1985;37:1-109.
    • Rose GD, Gierasch LM, Smith JA. Turns in peptides and proteins. Adv Protein Chem 1985;37:1-109.
  • 5
    • 18844414326 scopus 로고    scopus 로고
    • High accuracy prediction of β-turns and their types using propensities and multiple alignments
    • Fuchs PFJ, Alix AJP. High accuracy prediction of β-turns and their types using propensities and multiple alignments. Proteins 2005;59: 828-839.
    • (2005) Proteins , vol.59 , pp. 828-839
    • Fuchs, P.F.J.1    Alix, A.J.P.2
  • 7
    • 0015967881 scopus 로고
    • Conformational parameters for amino acids in helical, b-sheet and random coil regions calculated from proteins
    • Chou PY, Fasman GD. Conformational parameters for amino acids in helical, b-sheet and random coil regions calculated from proteins. Biochemistry 1974;13:211-223.
    • (1974) Biochemistry , vol.13 , pp. 211-223
    • Chou, P.Y.1    Fasman, G.D.2
  • 8
    • 0024279235 scopus 로고
    • Analysis and prediction of the different types of β-turn in proteins
    • Wilmot CM, Thornton JM. Analysis and prediction of the different types of β-turn in proteins. J Mol Biol 1988;203:221-232.
    • (1988) J Mol Biol , vol.203 , pp. 221-232
    • Wilmot, C.M.1    Thornton, J.M.2
  • 9
    • 0028566270 scopus 로고
    • A revised set of potentials for β- turn formation in proteins
    • Hutchinson EG, Thornton JM. A revised set of potentials for β- turn formation in proteins. Protein Sci 1994;3:2207-2213.
    • (1994) Protein Sci , vol.3 , pp. 2207-2213
    • Hutchinson, E.G.1    Thornton, J.M.2
  • 10
    • 0030808140 scopus 로고    scopus 로고
    • Classification and prediction of beta-turn types
    • Chou KC, Blinn JR. Classification and prediction of beta-turn types. J Prot Chem 1997;16:575-595.
    • (1997) J Prot Chem , vol.16 , pp. 575-595
    • Chou, K.C.1    Blinn, J.R.2
  • 11
    • 0031149431 scopus 로고    scopus 로고
    • Prediction of β-turns in proteins by 1-4 and 2-3 correlation model
    • Zhang CT, Chou KC. Prediction of β-turns in proteins by 1-4 and 2-3 correlation model. Biopolymers 1997;41:673-702.
    • (1997) Biopolymers , vol.41 , pp. 673-702
    • Zhang, C.T.1    Chou, K.C.2
  • 12
    • 0024412170 scopus 로고
    • Prediction of( -turns in proteins using neural network
    • McGregor MJ, Flores TP, Sternberg MJE. Prediction of( -turns in proteins using neural network. Protein Eng 1989;2:521-526.
    • (1989) Protein Eng , vol.2 , pp. 521-526
    • McGregor, M.J.1    Flores, T.P.2    Sternberg, M.J.E.3
  • 13
    • 0036855904 scopus 로고    scopus 로고
    • An evaluation of( -turn prediction methods
    • Kaur H, Raghava GP. An evaluation of( -turn prediction methods, Bioinformatics 2002;18:1508-1514.
    • (2002) Bioinformatics , vol.18 , pp. 1508-1514
    • Kaur, H.1    Raghava, G.P.2
  • 15
    • 19544387461 scopus 로고    scopus 로고
    • Improved method for predicting β-turn using support vector machine
    • Zhang Q, Yoon S, Welsh WJ. Improved method for predicting β-turn using support vector machine. Bioinformatics 2005;21:2370-2374.
    • (2005) Bioinformatics , vol.21 , pp. 2370-2374
    • Zhang, Q.1    Yoon, S.2    Welsh, W.J.3
  • 16
    • 0032900496 scopus 로고    scopus 로고
    • Prediction of the location and type of β-turns in proteins using neural networks
    • Shepherd AJ, Gorse D, Thornton JM. Prediction of the location and type of β-turns in proteins using neural networks. Protein Sci 1998; 8:1045-1055.
    • (1998) Protein Sci , vol.8 , pp. 1045-1055
    • Shepherd, A.J.1    Gorse, D.2    Thornton, J.M.3
  • 17
    • 8844252295 scopus 로고    scopus 로고
    • A neural network method for prediction of β-turn-types in proteins using evolutionary information
    • Kaur H, Raghava GPS. A neural network method for prediction of β-turn-types in proteins using evolutionary information. Bioinformatics 2004;20:2751-2758.
    • (2004) Bioinformatics , vol.20 , pp. 2751-2758
    • Kaur, H.1    Raghava, G.P.S.2
  • 18
    • 0037436339 scopus 로고    scopus 로고
    • Relibase: Design and development of a database for comprehensive analysis of protein ligand interactions
    • Hendlich M, Bergner A, Giinther J, Klebe G. Relibase: design and development of a database for comprehensive analysis of protein ligand interactions. J Mol Biol 2003;326:607-620.
    • (2003) J Mol Biol , vol.326 , pp. 607-620
    • Hendlich, M.1    Bergner, A.2    Giinther, J.3    Klebe, G.4
  • 25
    • 0345040882 scopus 로고    scopus 로고
    • Applications of support vector machines in bioinformatics
    • Byvatov E, Schneider G. Applications of support vector machines in bioinformatics. Appl Bioinf 2003;2:67-77.
    • (2003) Appl Bioinf , vol.2 , pp. 67-77
    • Byvatov, E.1    Schneider, G.2
  • 27
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody J, Darken CJ. Fast learning in networks of locally tuned processing units. Neural Comput 1989;1:281-294.
    • (1989) Neural Comput , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 28
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer- based molecular design
    • Schneider G, Wrede P. Artificial neural networks for computer- based molecular design. Prog Biophys Mol Biol 1998;70:175-222.
    • (1998) Prog Biophys Mol Biol , vol.70 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 29
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975; 405:442-451.
    • (1975) Biochim Biophys Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 30
    • 0036904104 scopus 로고    scopus 로고
    • A virtual screening method for prediction of the hERG potassium channel liability of compound libraries
    • Roche O, Trube G, Zuegge J, Pflimlin P, Alanine A, Schneider G. A virtual screening method for prediction of the hERG potassium channel liability of compound libraries. ChemBioChem 2002;3:455-459.
    • (2002) ChemBioChem , vol.3 , pp. 455-459
    • Roche, O.1    Trube, G.2    Zuegge, J.3    Pflimlin, P.4    Alanine, A.5    Schneider, G.6
  • 32
    • 0036790872 scopus 로고    scopus 로고
    • Statistical tools to assess the reliability of self-organizing maps
    • de Bodt E, Cottrell M, Verleyse M. Statistical tools to assess the reliability of self-organizing maps. Neural Networks 2002;15:967-978.
    • (2002) Neural Networks , vol.15 , pp. 967-978
    • de Bodt, E.1    Cottrell, M.2    Verleyse, M.3
  • 33
    • 0027092678 scopus 로고
    • Selection of a representative set of structures from the Brookhaven Protein Data Bank
    • Hobohm U, Scharf M, Schneider R, Sander C. Selection of a representative set of structures from the Brookhaven Protein Data Bank. Protein Sci 1992;1:409-417.
    • (1992) Protein Sci , vol.1 , pp. 409-417
    • Hobohm, U.1    Scharf, M.2    Schneider, R.3    Sander, C.4
  • 35
    • 0025690309 scopus 로고
    • Situations of γ-turns in proteins. Their relation to α-helices, β-sheets and ligand binding sites
    • Milner-White EJ. Situations of γ-turns in proteins. Their relation to α-helices, β-sheets and ligand binding sites. J Mol Biol 1990;216:386-397.
    • (1990) J Mol Biol , vol.216 , pp. 386-397
    • Milner-White, E.J.1
  • 37
    • 33644807623 scopus 로고    scopus 로고
    • The structures of thrombospondin-1 N-terminal domain(TSPN- 1) and its complex with a synthetic pentameric heparin
    • Tan K, Duquette M, Liu J, Zhang R, Joachimiak A, Wang J, Lawler J. The structures of thrombospondin-1 N-terminal domain(TSPN- 1) and its complex with a synthetic pentameric heparin. Structure 2006;14:33-42.
    • (2006) Structure , vol.14 , pp. 33-42
    • Tan, K.1    Duquette, M.2    Liu, J.3    Zhang, R.4    Joachimiak, A.5    Wang, J.6    Lawler, J.7
  • 38
    • 0036467068 scopus 로고    scopus 로고
    • Alignments grow, secondary structure prediction improves
    • Przybylski D, Rost B. Alignments grow, secondary structure prediction improves. Proteins 2002;46:197-205.
    • (2002) Proteins , vol.46 , pp. 197-205
    • Przybylski, D.1    Rost, B.2
  • 40
    • 17644370992 scopus 로고    scopus 로고
    • Support vector machines for prediction and analysis of beta and gamma-turns in proteins
    • Pham TH, Satou K, Ho TB. Support vector machines for prediction and analysis of beta and gamma-turns in proteins. J Bioinform Comput Biol 2005;3:343-358.
    • (2005) J Bioinform Comput Biol , vol.3 , pp. 343-358
    • Pham, T.H.1    Satou, K.2    Ho, T.B.3
  • 41
    • 40649128753 scopus 로고    scopus 로고
    • New support vector-based design method for binary hierarchical classifiers for multi-class classification problems
    • Wang YC, Casasent D. New support vector-based design method for binary hierarchical classifiers for multi-class classification problems. Neural Netw 2008;21:502-510.
    • (2008) Neural Netw , vol.21 , pp. 502-510
    • Wang, Y.C.1    Casasent, D.2
  • 42
    • 35248832636 scopus 로고    scopus 로고
    • Gaussian processes: A method for automatic QSAR modeling of ADME properties
    • Obrezanova O, Csanyi G, Gola JM, Segall MD. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 2007;47:1847-1857.
    • (2007) J Chem Inf Model , vol.47 , pp. 1847-1857
    • Obrezanova, O.1    Csanyi, G.2    Gola, J.M.3    Segall, M.D.4
  • 43
    • 33947380080 scopus 로고    scopus 로고
    • Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
    • Zhao X, Cheung LW. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data. BMC Bio- informatics 2007;8:67.
    • (2007) BMC Bio- informatics , vol.8 , pp. 67
    • Zhao, X.1    Cheung, L.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.