메뉴 건너뛰기




Volumn 46, Issue 3, 2009, Pages 743-751

Classification algorithm sensitivity to training data with non representative attribute noise

Author keywords

Area under the Receiver Operating Curve; Attribute noise; Classification algorithm

Indexed keywords

AREA UNDER THE RECEIVER OPERATING CURVE; ATTRIBUTE NOISE; CLASSIFICATION ALGORITHM; NOISE LEVELS;

EID: 58749104155     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2008.11.021     Document Type: Article
Times cited : (30)

References (37)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D., and Kibler D. Instance-based learning algorithms. Machine Learning 6 (1991) 37-66
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 4
    • 0347596605 scopus 로고    scopus 로고
    • Uniform-distribution attribute noise learnability
    • Bshouty N., Jackson J., and Tamon T. Uniform-distribution attribute noise learnability. Information and Computation 187 2 (2003) 277-290
    • (2003) Information and Computation , vol.187 , Issue.2 , pp. 277-290
    • Bshouty, N.1    Jackson, J.2    Tamon, T.3
  • 5
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Cessie S., and Houwelingen J. Ridge estimators in logistic regression. Applied Statistics 41 1 (1992) 191-201
    • (1992) Applied Statistics , vol.41 , Issue.1 , pp. 191-201
    • Cessie, S.1    Houwelingen, J.2
  • 7
    • 0010610411 scopus 로고    scopus 로고
    • Learning in hybrid noise environments using statistical queries
    • Fisher D., and Lens H. (Eds), Springer-Verlag
    • Decatur S. Learning in hybrid noise environments using statistical queries. In: Fisher D., and Lens H. (Eds). Learning From Data: AI and Statistics (1996), Springer-Verlag 259-270
    • (1996) Learning From Data: AI and Statistics , pp. 259-270
    • Decatur, S.1
  • 8
    • 4243740904 scopus 로고    scopus 로고
    • DSSResources.COM, http://dssresources.com/papers/features/demarest/demarest07232004.html
    • Demarest M. The Politics of Data Warehousing (07/23/2004). http://dssresources.com/papers/features/demarest/demarest07232004.html DSSResources.COM, http://dssresources.com/papers/features/demarest/demarest07232004.html
    • (2004) The Politics of Data Warehousing
    • Demarest, M.1
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 2 (2000) 139-158
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.1
  • 10
    • 14844357975 scopus 로고    scopus 로고
    • A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions
    • Fawcett T., and Flach P. A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning 58 (2005) 33-38
    • (2005) Machine Learning , vol.58 , pp. 33-38
    • Fawcett, T.1    Flach, P.2
  • 12
    • 0013411860 scopus 로고
    • Can PAC algorithms tolerate random attribute noise?
    • Goldman S., and Stone R. Can PAC algorithms tolerate random attribute noise?. Algorithimica 14 (1995) 70-84
    • (1995) Algorithimica , vol.14 , pp. 70-84
    • Goldman, S.1    Stone, R.2
  • 13
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine http://www.ics.uci.edu/~mlearn/MLRepository.html
    • Hettich S., Blake C., and Merz C. UCI Repository of Machine Learning Databases (1998), Department of Information and Computer Science, University of California, Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html http://www.ics.uci.edu/~mlearn/MLRepository.html
    • (1998) UCI Repository of Machine Learning Databases
    • Hettich, S.1    Blake, C.2    Merz, C.3
  • 14
    • 3042682295 scopus 로고    scopus 로고
    • Towards quantifying data quality costs
    • Kim W., and Choi B. Towards quantifying data quality costs. Journal of Object Technology 2 4 (July-August 2003) 69-76
    • (2003) Journal of Object Technology , vol.2 , Issue.4 , pp. 69-76
    • Kim, W.1    Choi, B.2
  • 15
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • Keerthi S., Shevade S., Bhattacharyya C., and Murthy K. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation 13 3 (2001) 637-649
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.1    Shevade, S.2    Bhattacharyya, C.3    Murthy, K.4
  • 17
    • 33750439145 scopus 로고    scopus 로고
    • Accessing information sharing and information quality in supply chain management
    • Li S., and Lin B. Accessing information sharing and information quality in supply chain management. Decision Support Systems 42 3 (December 2006) 1641-1656
    • (2006) Decision Support Systems , vol.42 , Issue.3 , pp. 1641-1656
    • Li, S.1    Lin, B.2
  • 18
    • 21344468168 scopus 로고
    • Improving the performance stability of inductive expert systems under input noise
    • Mannino M., Mookerjee V., and Gilson R. Improving the performance stability of inductive expert systems under input noise. Information Systems Research 6 4 (December 1995) 328-356
    • (1995) Information Systems Research , vol.6 , Issue.4 , pp. 328-356
    • Mannino, M.1    Mookerjee, V.2    Gilson, R.3
  • 19
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers J. An empirical comparison of pruning methods for decision tree induction. Machine Learning 4 2 (1989) 227-243
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 227-243
    • Mingers, J.1
  • 20
    • 0036641222 scopus 로고    scopus 로고
    • Computer systems that learn: an empirical study of the effect of noise on the performance of three classification methods
    • Nolan J. Computer systems that learn: an empirical study of the effect of noise on the performance of three classification methods. Expert Systems Applications 23 1 (2002) 39-47
    • (2002) Expert Systems Applications , vol.23 , Issue.1 , pp. 39-47
    • Nolan, J.1
  • 22
    • 0031988271 scopus 로고    scopus 로고
    • Data quality and systems theory
    • Orr K. Data quality and systems theory. CACM 41 2 (February 1998) 66-71
    • (1998) CACM , vol.41 , Issue.2 , pp. 66-71
    • Orr, K.1
  • 24
    • 34948896366 scopus 로고    scopus 로고
    • available from http://www.privacyactivism.org/docs/DataAggregatorsStudy.html
    • Pierce D., and Ackerman L. Data Aggregators: A Study of Data Quality and Responsiveness (May 2005). http://www.privacyactivism.org/docs/DataAggregatorsStudy.html available from http://www.privacyactivism.org/docs/DataAggregatorsStudy.html
    • (2005) Data Aggregators: A Study of Data Quality and Responsiveness
    • Pierce, D.1    Ackerman, L.2
  • 25
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning Journal 42 3 (March 2001) 203-231
    • (2001) Machine Learning Journal , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 26
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 27
    • 0001182408 scopus 로고
    • The effect of noise on concept learning
    • Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds), Morgan Kaufmann
    • Quinlan J. The effect of noise on concept learning. In: Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds). Machine Learning, an Artificial Intelligence Approach, Volume II (1986), Morgan Kaufmann 149-166
    • (1986) Machine Learning, an Artificial Intelligence Approach, Volume II , pp. 149-166
    • Quinlan, J.1
  • 32
    • 0031988304 scopus 로고    scopus 로고
    • The impact of poor data quality on the typical enterprise
    • Redman T. The impact of poor data quality on the typical enterprise. CACM 41 2 (February 1998) 79-82
    • (1998) CACM , vol.41 , Issue.2 , pp. 79-82
    • Redman, T.1
  • 33
    • 84947402121 scopus 로고
    • Rectangular confidence regions for the means of multivariate normal distributions
    • Sidak Z. Rectangular confidence regions for the means of multivariate normal distributions. JASA 62 (1967) 626-633
    • (1967) JASA , vol.62 , pp. 626-633
    • Sidak, Z.1
  • 34
    • 33750493303 scopus 로고    scopus 로고
    • A logical framework for identifying quality knowledge from different data sources
    • Su K., Huang H., Wu X., and Zhang S. A logical framework for identifying quality knowledge from different data sources. Decision Support Systems 42 3 (December 2006) 1673-1683
    • (2006) Decision Support Systems , vol.42 , Issue.3 , pp. 1673-1683
    • Su, K.1    Huang, H.2    Wu, X.3    Zhang, S.4
  • 35
    • 14844366200 scopus 로고    scopus 로고
    • On the application of ROC analysis to predict classification performance under varying class distributions
    • Webb G., and Ting K. On the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning 58 (2005) 25-32
    • (2005) Machine Learning , vol.58 , pp. 25-32
    • Webb, G.1    Ting, K.2
  • 37
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: a quantitative study of their impacts
    • Zhu X., and Wu X. Class noise vs. attribute noise: a quantitative study of their impacts. Artificial Intelligence Review 22 3 (2004) 177-210
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.