-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha D., and Kibler D. Instance-based learning algorithms. Machine Learning 6 (1991) 37-66
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
-
2
-
-
0003802343
-
-
Wadsworth Publishing, Belmont, CA
-
Breiman L., Friedman J., Olshen R., and Stone C. Classification and Regression Trees (1984), Wadsworth Publishing, Belmont, CA
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
5
-
-
0000521473
-
Ridge estimators in logistic regression
-
Cessie S., and Houwelingen J. Ridge estimators in logistic regression. Applied Statistics 41 1 (1992) 191-201
-
(1992)
Applied Statistics
, vol.41
, Issue.1
, pp. 191-201
-
-
Cessie, S.1
Houwelingen, J.2
-
7
-
-
0010610411
-
Learning in hybrid noise environments using statistical queries
-
Fisher D., and Lens H. (Eds), Springer-Verlag
-
Decatur S. Learning in hybrid noise environments using statistical queries. In: Fisher D., and Lens H. (Eds). Learning From Data: AI and Statistics (1996), Springer-Verlag 259-270
-
(1996)
Learning From Data: AI and Statistics
, pp. 259-270
-
-
Decatur, S.1
-
8
-
-
4243740904
-
-
DSSResources.COM, http://dssresources.com/papers/features/demarest/demarest07232004.html
-
Demarest M. The Politics of Data Warehousing (07/23/2004). http://dssresources.com/papers/features/demarest/demarest07232004.html DSSResources.COM, http://dssresources.com/papers/features/demarest/demarest07232004.html
-
(2004)
The Politics of Data Warehousing
-
-
Demarest, M.1
-
9
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
-
Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 2 (2000) 139-158
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.1
-
10
-
-
14844357975
-
A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions
-
Fawcett T., and Flach P. A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning 58 (2005) 33-38
-
(2005)
Machine Learning
, vol.58
, pp. 33-38
-
-
Fawcett, T.1
Flach, P.2
-
12
-
-
0013411860
-
Can PAC algorithms tolerate random attribute noise?
-
Goldman S., and Stone R. Can PAC algorithms tolerate random attribute noise?. Algorithimica 14 (1995) 70-84
-
(1995)
Algorithimica
, vol.14
, pp. 70-84
-
-
Goldman, S.1
Stone, R.2
-
13
-
-
0003408496
-
-
Department of Information and Computer Science, University of California, Irvine http://www.ics.uci.edu/~mlearn/MLRepository.html
-
Hettich S., Blake C., and Merz C. UCI Repository of Machine Learning Databases (1998), Department of Information and Computer Science, University of California, Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html http://www.ics.uci.edu/~mlearn/MLRepository.html
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Hettich, S.1
Blake, C.2
Merz, C.3
-
14
-
-
3042682295
-
Towards quantifying data quality costs
-
Kim W., and Choi B. Towards quantifying data quality costs. Journal of Object Technology 2 4 (July-August 2003) 69-76
-
(2003)
Journal of Object Technology
, vol.2
, Issue.4
, pp. 69-76
-
-
Kim, W.1
Choi, B.2
-
15
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi S., Shevade S., Bhattacharyya C., and Murthy K. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation 13 3 (2001) 637-649
-
(2001)
Neural Computation
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.1
Shevade, S.2
Bhattacharyya, C.3
Murthy, K.4
-
17
-
-
33750439145
-
Accessing information sharing and information quality in supply chain management
-
Li S., and Lin B. Accessing information sharing and information quality in supply chain management. Decision Support Systems 42 3 (December 2006) 1641-1656
-
(2006)
Decision Support Systems
, vol.42
, Issue.3
, pp. 1641-1656
-
-
Li, S.1
Lin, B.2
-
18
-
-
21344468168
-
Improving the performance stability of inductive expert systems under input noise
-
Mannino M., Mookerjee V., and Gilson R. Improving the performance stability of inductive expert systems under input noise. Information Systems Research 6 4 (December 1995) 328-356
-
(1995)
Information Systems Research
, vol.6
, Issue.4
, pp. 328-356
-
-
Mannino, M.1
Mookerjee, V.2
Gilson, R.3
-
19
-
-
79952785777
-
An empirical comparison of pruning methods for decision tree induction
-
Mingers J. An empirical comparison of pruning methods for decision tree induction. Machine Learning 4 2 (1989) 227-243
-
(1989)
Machine Learning
, vol.4
, Issue.2
, pp. 227-243
-
-
Mingers, J.1
-
20
-
-
0036641222
-
Computer systems that learn: an empirical study of the effect of noise on the performance of three classification methods
-
Nolan J. Computer systems that learn: an empirical study of the effect of noise on the performance of three classification methods. Expert Systems Applications 23 1 (2002) 39-47
-
(2002)
Expert Systems Applications
, vol.23
, Issue.1
, pp. 39-47
-
-
Nolan, J.1
-
22
-
-
0031988271
-
Data quality and systems theory
-
Orr K. Data quality and systems theory. CACM 41 2 (February 1998) 66-71
-
(1998)
CACM
, vol.41
, Issue.2
, pp. 66-71
-
-
Orr, K.1
-
24
-
-
34948896366
-
-
available from http://www.privacyactivism.org/docs/DataAggregatorsStudy.html
-
Pierce D., and Ackerman L. Data Aggregators: A Study of Data Quality and Responsiveness (May 2005). http://www.privacyactivism.org/docs/DataAggregatorsStudy.html available from http://www.privacyactivism.org/docs/DataAggregatorsStudy.html
-
(2005)
Data Aggregators: A Study of Data Quality and Responsiveness
-
-
Pierce, D.1
Ackerman, L.2
-
25
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning Journal 42 3 (March 2001) 203-231
-
(2001)
Machine Learning Journal
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
26
-
-
33744584654
-
Induction of decision trees
-
Quinlan J. Induction of decision trees. Machine Learning 1 (1986) 81-106
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.1
-
27
-
-
0001182408
-
The effect of noise on concept learning
-
Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds), Morgan Kaufmann
-
Quinlan J. The effect of noise on concept learning. In: Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds). Machine Learning, an Artificial Intelligence Approach, Volume II (1986), Morgan Kaufmann 149-166
-
(1986)
Machine Learning, an Artificial Intelligence Approach, Volume II
, pp. 149-166
-
-
Quinlan, J.1
-
32
-
-
0031988304
-
The impact of poor data quality on the typical enterprise
-
Redman T. The impact of poor data quality on the typical enterprise. CACM 41 2 (February 1998) 79-82
-
(1998)
CACM
, vol.41
, Issue.2
, pp. 79-82
-
-
Redman, T.1
-
33
-
-
84947402121
-
Rectangular confidence regions for the means of multivariate normal distributions
-
Sidak Z. Rectangular confidence regions for the means of multivariate normal distributions. JASA 62 (1967) 626-633
-
(1967)
JASA
, vol.62
, pp. 626-633
-
-
Sidak, Z.1
-
34
-
-
33750493303
-
A logical framework for identifying quality knowledge from different data sources
-
Su K., Huang H., Wu X., and Zhang S. A logical framework for identifying quality knowledge from different data sources. Decision Support Systems 42 3 (December 2006) 1673-1683
-
(2006)
Decision Support Systems
, vol.42
, Issue.3
, pp. 1673-1683
-
-
Su, K.1
Huang, H.2
Wu, X.3
Zhang, S.4
-
35
-
-
14844366200
-
On the application of ROC analysis to predict classification performance under varying class distributions
-
Webb G., and Ting K. On the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning 58 (2005) 25-32
-
(2005)
Machine Learning
, vol.58
, pp. 25-32
-
-
Webb, G.1
Ting, K.2
-
37
-
-
19544372918
-
Class noise vs. attribute noise: a quantitative study of their impacts
-
Zhu X., and Wu X. Class noise vs. attribute noise: a quantitative study of their impacts. Artificial Intelligence Review 22 3 (2004) 177-210
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.3
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|