메뉴 건너뛰기




Volumn 23, Issue 2, 2008, Pages 277-289

The Monte Carlo em method for estimating multinomial probit latent variable models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 42149087923     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-007-0091-7     Document Type: Article
Times cited : (1)

References (33)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of polychotomous response data
    • Albert JH and Chib S (1993). Bayesian analysis of polychotomous response data. J Am Stat Assoc 88: 669-679
    • (1993) J Am Stat Assoc , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 2
    • 0014841634 scopus 로고
    • Multi-variate probit analysis
    • Ashford JR and Sowden RR (1970). Multi-variate probit analysis. Biometrics 26: 535-546
    • (1970) Biometrics , vol.26 , pp. 535-546
    • Ashford, J.R.1    Sowden, R.R.2
  • 3
    • 0030451789 scopus 로고    scopus 로고
    • High-dimensional multivariate probit analysis
    • Bock RD and Gibbons RD (1996). High-dimensional multivariate probit analysis. Biometrics 52: 1183-1194
    • (1996) Biometrics , vol.52 , pp. 1183-1194
    • Bock, R.D.1    Gibbons, R.D.2
  • 4
    • 0000259264 scopus 로고
    • Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models
    • Börsch-Supan A and Hajivassiliou V (1994). Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models. J Econometrics 58: 347-368
    • (1994) J Econometrics , vol.58 , pp. 347-368
    • Börsch-Supan, A.1    Hajivassiliou, V.2
  • 5
    • 0002536885 scopus 로고
    • Estimability in the multinomial probit model
    • Bunch DS (1991). Estimability in the multinomial probit model. Transport Res 25: 1-12
    • (1991) Transport Res , vol.25 , pp. 1-12
    • Bunch, D.S.1
  • 6
    • 0030933587 scopus 로고    scopus 로고
    • Maximum likelihood estimation for probit-linear mixed models with correlated random effects
    • Chan JSK and Kuk AYC (1997). Maximum likelihood estimation for probit-linear mixed models with correlated random effects. Biometrics 53: 86-97
    • (1997) Biometrics , vol.53 , pp. 86-97
    • Chan, J.S.K.1    Kuk, A.Y.C.2
  • 8
    • 0022165005 scopus 로고
    • Parameter estimability in the multinomial probit model
    • Dansie B (1985). Parameter estimability in the multinomial probit model. Transport Res 19: 526-528
    • (1985) Transport Res , vol.19 , pp. 526-528
    • Dansie, B.1
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete observations
    • Dempster AP, Laird NM and Rubin DB (1977). Maximum likelihood estimation from incomplete observations. J R Stat Soc B 39: 1-38
    • (1977) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 0346208260 scopus 로고
    • Statistical inference in multiperiod probit model
    • Federal Reserve Bank of Minneapolis, MN
    • Geweke JF, Keane MP, Runkle DE (1994) Statistical inference in multiperiod probit model. Research Department Staff Report 177, Federal Reserve Bank of Minneapolis, MN
    • (1994) Research Department Staff Report , vol.177
    • Geweke, J.F.1    Keane, M.P.2    Runkle, D.E.3
  • 13
    • 0001025439 scopus 로고
    • A conditional probit model for qualitative choice: Discrete decisions recognizing interdependence and heterogeneous preferences
    • Hausman J and Wise D (1978). A conditional probit model for qualitative choice: discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica 45: 319-339
    • (1978) Econometrica , vol.45 , pp. 319-339
    • Hausman, J.1    Wise, D.2
  • 14
    • 0000996386 scopus 로고
    • Maximum likelihood estimation from incomplete data
    • Hartley H (1958). Maximum likelihood estimation from incomplete data. Biometrics 14: 179-194
    • (1958) Biometrics , vol.14 , pp. 179-194
    • Hartley, H.1
  • 15
    • 0001722619 scopus 로고
    • A note on identification in the multinomial probit model
    • Keane M (1992). A note on identification in the multinomial probit model. J Business Econom Stat 10: 193-200
    • (1992) J Business Econom Stat , vol.10 , pp. 193-200
    • Keane, M.1
  • 17
    • 0141481031 scopus 로고    scopus 로고
    • Bayesian analysis of structural equation models with dichotomous variables
    • Lee SY and Song XY (2003). Bayesian analysis of structural equation models with dichotomous variables. Stat Med 22: 3073-3088
    • (2003) Stat Med , vol.22 , pp. 3073-3088
    • Lee, S.Y.1    Song, X.Y.2
  • 19
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using em and its extensions, ECM and ECME
    • Liu C and Rubin DB (1995). ML estimation of the t distribution using EM and its extensions, ECM and ECME. Stat Sinica 5: 19-39
    • (1995) Stat Sinica , vol.5 , pp. 19-39
    • Liu, C.1    Rubin, D.B.2
  • 20
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the em algorithm
    • Louis TA (1982). Finding the observed information matrix when using the EM algorithm. J R Stat Soc B 44: 226-233
    • (1982) J R Stat Soc B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 21
    • 21344497135 scopus 로고
    • Maximum likelihood variance components estimation for binary data
    • McCulloch CE (1994). Maximum likelihood variance components estimation for binary data. J Am Stat Assoc 89: 330-335
    • (1994) J Am Stat Assoc , vol.89 , pp. 330-335
    • McCulloch, C.E.1
  • 22
    • 43949158952 scopus 로고
    • An exact likelihood analysis of the multinomial probit model
    • McCulloch R and Rossi PE (1994). An exact likelihood analysis of the multinomial probit model. J Econometrics 64: 207-240
    • (1994) J Econometrics , vol.64 , pp. 207-240
    • Rossi, P.E.1
  • 23
    • 0000883977 scopus 로고
    • A method of simulated moments for estimation of discrete response models without numerical integration
    • McFadden D (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57: 995-1027
    • (1989) Econometrica , vol.57 , pp. 995-1027
    • McFadden, D.1
  • 25
    • 21344477603 scopus 로고
    • On the rate of convergence of the ECM algorithm
    • Meng XL (1994). On the rate of convergence of the ECM algorithm. Ann Stat 22: 326-339
    • (1994) Ann Stat , vol.22 , pp. 326-339
    • Meng, X.L.1
  • 26
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng XL and Rubin DB (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80: 267-278
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 27
    • 0030336223 scopus 로고    scopus 로고
    • Fitting full-information item factor models and an empirical investigation of bridge sampling
    • Meng XL and Schilling S (1996). Fitting full-information item factor models and an empirical investigation of bridge sampling. J Am Stat Assoc 91: 1254-1267
    • (1996) J Am Stat Assoc , vol.91 , pp. 1254-1267
    • Meng, X.L.1    Schilling, S.2
  • 28
    • 0034225899 scopus 로고    scopus 로고
    • A Monte Carlo em method for estimating multinomial probit models
    • Natarajan R, McCulloch CE and Kiefer NM (2000). A Monte Carlo EM method for estimating multinomial probit models. Comput Stat Data Anal 34: 33-50
    • (2000) Comput Stat Data Anal , vol.34 , pp. 33-50
    • Natarajan, R.1    Kiefer, N.M.2
  • 29
    • 27144553773 scopus 로고    scopus 로고
    • A multivariate probit latent variable model for analyzing dichotomous responses
    • Song XY and Lee SY (2005). A multivariate probit latent variable model for analyzing dichotomous responses. Stat Sinica 15: 645-664
    • (2005) Stat Sinica , vol.15 , pp. 645-664
    • Song, X.Y.1    Lee, S.Y.2
  • 30
    • 0000119331 scopus 로고
    • A method for smoothing simulated moments of discrete probabilities in multinomial probit models
    • Stern S (1992). A method for smoothing simulated moments of discrete probabilities in multinomial probit models. Econometrica 60: 943-952
    • (1992) Econometrica , vol.60 , pp. 943-952
    • Stern, S.1
  • 32
    • 0029816547 scopus 로고    scopus 로고
    • An em algorithm for nonlinear random effects models
    • Walker S (1996). An EM algorithm for nonlinear random effects models. Biometrics 52: 934-944
    • (1996) Biometrics , vol.52 , pp. 934-944
    • Walker, S.1
  • 33
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the em algorithm and the poor man's data augmentation algorithm
    • Wei GCG and Tanner MA (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. J Am Stat Assoc 85: 699-704
    • (1990) J Am Stat Assoc , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.