메뉴 건너뛰기




Volumn 34, Issue 1, 2000, Pages 33-50

Monte Carlo EM method for estimating multinomial probit models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; SAMPLING;

EID: 0034225899     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-9473(99)00073-0     Document Type: Article
Times cited : (19)

References (30)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of polychotomous response data.
    • J.H Albert S Chib Bayesian analysis of polychotomous response data. J. Amer. Statist. Assoc. 88 1993 669 679
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 669-679
    • Albert, J.H1    Chib, S2
  • 2
    • 21844509435 scopus 로고
    • Modeling household purchase behavior with logistic normal regression.
    • G.M Allenby P.J Lenk Modeling household purchase behavior with logistic normal regression. J. Amer. Statist. Assoc. 89 1994 1218 1231
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1218-1231
    • Allenby, G.M1    Lenk, P.J2
  • 3
    • 85120124233 scopus 로고    scopus 로고
    • Aptech Systems, 1994. The GAUSS System, Version 3.0. Maple Valley, WA.
  • 4
    • 0014841634 scopus 로고
    • Multi-variate probit analysis.
    • J.R Ashford R.R Sowden Multi-variate probit analysis. Biometrics 26 1970 535 546
    • (1970) Biometrics , vol.26 , pp. 535-546
    • Ashford, J.R1    Sowden, R.R2
  • 5
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm.
    • J.G Booth J.P Hobert Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. Roy. Statist. Soc. B 61 1999 265 285
    • (1999) J. Roy. Statist. Soc. , vol.B 61 , pp. 265-285
    • Booth, J.G1    Hobert, J.P2
  • 6
    • 0000259264 scopus 로고
    • Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models.
    • A Börsch-Supan V Hajivassiliou Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models. J. Econometrics 58 1994 347 368
    • (1994) J. Econometrics , vol.58 , pp. 347-368
    • Börsch-Supan, A1    Hajivassiliou, V2
  • 7
    • 21844487061 scopus 로고
    • Monte carlo EM estimation for time series models involving counts.
    • K.S Chan J Ledolter Monte carlo EM estimation for time series models involving counts. J. Amer. Statist. Assoc. 90 1995 242 252
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 242-252
    • Chan, K.S1    Ledolter, J2
  • 8
    • 85120115838 scopus 로고    scopus 로고
    • Daganzo, C., 1980. Multinomial Probit. Acedemic Press, New York, 1980.
  • 9
    • 0022165005 scopus 로고
    • Parameter estimability in the multinomial probit model.
    • B Dansie Parameter estimability in the multinomial probit model. Transportation Res. 19B 1985 526 528
    • (1985) Transportation Res. , vol.19B , pp. 526-528
    • Dansie, B1
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete observations.
    • A.P Dempster N.M Laird D.B Rubin Maximum likelihood estimation from incomplete observations. J. Roy. Statist. Soc. B 39 1977 1 38
    • (1977) J. Roy. Statist. Soc. , vol.B 39 , pp. 1-38
    • Dempster, A.P1    Laird, N.M2    Rubin, D.B3
  • 11
    • 85120141698 scopus 로고    scopus 로고
    • Devroye, L., 1986. Non-Uniform Random Variate Generation. Springer, New York.
  • 12
    • 85120132666 scopus 로고    scopus 로고
    • Diebolt, J., Ip, E.H.S., 1998. Stochastic EM: Method and Applications. in: Markov Chain Monte Carlo in Practice, Eds: Gilks, Richardson, Spiegelhalter. Chapman & Hall, New York, NY.
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
    • S Geman D Geman Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 1984 721 741
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S1    Geman, D2
  • 14
    • 85120146842 scopus 로고    scopus 로고
    • Geweke, J.F., 1989. Efficient simulation from the multivariate normal distribution subject to linear inequality constraints and the evaluation of constraint probabilities. Mimeo. Department of Economics, Duke University, Durham, NC.
  • 15
    • 85120136902 scopus 로고    scopus 로고
    • Geweke, J.F., Keane, M.P., Runkle, D.E., 1994. Statistical inference in the multinomial multiperiod probit model. Research Department Staff Report 177. Federal Reserve Bank of Minneapolis, MN.
  • 16
    • 0026668039 scopus 로고
    • A Monte Carlo method for combined segregation and linkage analysis.
    • S.W Guo E.A Thompson A Monte Carlo method for combined segregation and linkage analysis. Amer. J. Hum. Genet. 51 1992 1111 1126
    • (1992) Amer. J. Hum. Genet. , vol.51 , pp. 1111-1126
    • Guo, S.W1    Thompson, E.A2
  • 17
    • 85120134592 scopus 로고    scopus 로고
    • Hajivassiliou, V., McFadden, D., Ruud, D., 1992. Simulation of multivariate normal orthant probabilities: methods and programs. Discussion Paper 1021. Cowles Foundation, Yale University, CT.
  • 18
    • 0001025439 scopus 로고
    • A conditional probit model for qualitative choice: discrete decisions recognizing interdependence and heterogeneous preferences.
    • J Hausman D Wise A conditional probit model for qualitative choice: discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica 45 1978 319 339
    • (1978) Econometrica , vol.45 , pp. 319-339
    • Hausman, J1    Wise, D2
  • 19
    • 0022966316 scopus 로고
    • Unbalanced repeated measures models with structured covariance matrices.
    • R.I Jennrich M.D Schluchter Unbalanced repeated measures models with structured covariance matrices. Biometrics 42 1986 805 820
    • (1986) Biometrics , vol.42 , pp. 805-820
    • Jennrich, R.I1    Schluchter, M.D2
  • 20
    • 0002621109 scopus 로고
    • A computationally practical simulation estimator for panel data.
    • M.P Keane A computationally practical simulation estimator for panel data. Econometrica 62 1994 95 116
    • (1994) Econometrica , vol.62 , pp. 95-116
    • Keane, M.P1
  • 22
    • 85120127324 scopus 로고    scopus 로고
    • Lerman, S., Manski, C., 1981. On the use of simulated frequencies to approximate choice probabilities. In: Manski, C., McFadden, D. (Eds.), Structural Analysis of Discrete Data with Econometric Applications. MIT Press, Cambridge, MA, pp. 305–319.
  • 23
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm.
    • T.A Louis Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc. B 44 1982 226 233
    • (1982) J. Roy. Statist. Soc. , vol.B 44 , pp. 226-233
    • Louis, T.A1
  • 24
    • 21344497135 scopus 로고
    • Maximum likelihood variance components estimation for binary data.
    • C.E McCulloch Maximum likelihood variance components estimation for binary data. J. Amer. Statist. Assoc. 89 1994 330 335
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 330-335
    • McCulloch, C.E1
  • 25
    • 43949158952 scopus 로고
    • An exact likelihood analysis of the multinomial probit model.
    • R McCulloch P.E Rossi An exact likelihood analysis of the multinomial probit model. J. Econometrics 64 1994 207 240
    • (1994) J. Econometrics , vol.64 , pp. 207-240
    • McCulloch, R1    Rossi, P.E2
  • 26
    • 0000883977 scopus 로고
    • A method of simulated moments for estimation of discrete response models without numerical integration.
    • D McFadden A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57 1989 995 1027
    • (1989) Econometrica , vol.57 , pp. 995-1027
    • McFadden, D1
  • 27
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework.
    • X.L Meng D.B Rubin Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80 1993 267 278
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L1    Rubin, D.B2
  • 28
    • 85120129849 scopus 로고    scopus 로고
    • Searle, S., Casella, G., McCulloch, C.E., 1992. Variance Components. Wiley, New York.
  • 29
    • 0000119331 scopus 로고
    • A method for smoothing simulated moments of discrete probabilities in multinomial probit models.
    • S Stern A method for smoothing simulated moments of discrete probabilities in multinomial probit models. Econometrica 60 1992 943 952
    • (1992) Econometrica , vol.60 , pp. 943-952
    • Stern, S1
  • 30
    • 85120147344 scopus 로고    scopus 로고
    • Tanner, M.A., 1993. Tools for Statistical Inference. Methods for the Exploration of Posterior Distributions and Likelihood Functions. Springer, New York.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.