메뉴 건너뛰기




Volumn 13, Issue 4, 2000, Pages 335-354

Training neural networks with noisy data as an ill-posed problem

Author keywords

Ill posed problems; Least squares collocation; Network training; Neural networks; Regularization

Indexed keywords


EID: 0034558491     PISSN: 10197168     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1016641629556     Document Type: Article
Times cited : (20)

References (40)
  • 1
    • 0031192710 scopus 로고    scopus 로고
    • Besov regularization, thresholding and wavelets for smoothing data
    • U. Amato and D.T. Vuza, Besov regularization, thresholding and wavelets for smoothing data, Numer. Funct. Anal. Optim. 18 (1997) 461-493.
    • (1997) Numer. Funct. Anal. Optim. , vol.18 , pp. 461-493
    • Amato, U.1    Vuza, D.T.2
  • 2
    • 84966247212 scopus 로고
    • The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs
    • K.E. Atkinson and I.H. Sloan, The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs, Math. Comp. 56 (1991) 119-139.
    • (1991) Math. Comp. , vol.56 , pp. 119-139
    • Atkinson, K.E.1    Sloan, I.H.2
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory 39 (1993) 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 5
    • 0000852384 scopus 로고
    • Regularization and complexity control in feed-forward networks
    • C.M. Bishop, Regularization and complexity control in feed-forward networks, EC2 & Cie (1995) 141-148.
    • (1995) EC2 & Cie , pp. 141-148
    • Bishop, C.M.1
  • 7
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • C.K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden layer, J. Approx. Theory 70 (1992) 131-141.
    • (1992) J. Approx. Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 12
    • 0001126097 scopus 로고    scopus 로고
    • Regularization wavelets and multiresolution
    • W. Freeden and F. Schneider, Regularization wavelets and multiresolution, Inverse Problems 14 (1998) 225-243.
    • (1998) Inverse Problems , vol.14 , pp. 225-243
    • Freeden, W.1    Schneider, F.2
  • 15
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • F. Girosi and T. Poggio, Networks and the best approximation property, Biol. Cybern. 63 (1990) 169-176.
    • (1990) Biol. Cybern. , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 16
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones and T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (1995) 219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 17
    • 0019145978 scopus 로고
    • Generalized inverses and generalized splines
    • C.W. Groetsch, Generalized inverses and generalized splines, Numer. Funct. Anal. Optim. 2 (1980) 93-97.
    • (1980) Numer. Funct. Anal. Optim. , vol.2 , pp. 93-97
    • Groetsch, C.W.1
  • 20
    • 0032342402 scopus 로고    scopus 로고
    • A mollification framework for improperly posed problems
    • M. Hegland and R.S. Anderssen, A mollification framework for improperly posed problems, Numer. Math. 78 (1998) 549-575.
    • (1998) Numer. Math. , vol.78 , pp. 549-575
    • Hegland, M.1    Anderssen, R.S.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approxi-mators
    • K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approxi-mators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 24
    • 0043242769 scopus 로고
    • Smoothed projection methods for the moment problem
    • A.K. Louis and P. Maaß, Smoothed projection methods for the moment problem, Numer. Math. 59 (1991) 277-294.
    • (1991) Numer. Math. , vol.59 , pp. 277-294
    • Louis, A.K.1    Maaß, P.2
  • 25
    • 0000180631 scopus 로고    scopus 로고
    • Approximate inverse for linear and some nonlinear problems
    • A.K. Louis, Approximate inverse for linear and some nonlinear problems, Inverse Problems 12 (1996) 175-190.
    • (1996) Inverse Problems , vol.12 , pp. 175-190
    • Louis, A.K.1
  • 26
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Y. Makovoz, Uniform approximation by neural networks, J. Approx. Theory 95 (1998) 215-228.
    • (1998) J. Approx. Theory , vol.95 , pp. 215-228
    • Makovoz, Y.1
  • 29
    • 0000194429 scopus 로고
    • Degree of approximation by neural and translation networks with a single hidden layer
    • H.N. Mhaskar and C.A. Micchelli, Degree of approximation by neural and translation networks with a single hidden layer, Adv. Appl. Math. 16 (1995) 151-183.
    • (1995) Adv. Appl. Math. , vol.16 , pp. 151-183
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 31
    • 84968487240 scopus 로고
    • Convergence rates of approximate least squares solutions to linear integral and operator equations of the first kind
    • M.Z. Nashed and G. Wahba, Convergence rates of approximate least squares solutions to linear integral and operator equations of the first kind, Math. Comp. 28 (1974) 69-80.
    • (1974) Math. Comp. , vol.28 , pp. 69-80
    • Nashed, M.Z.1    Wahba, G.2
  • 32
    • 0000363718 scopus 로고
    • Regularisierung schlecht gestellter Probleme durch Projektionsverfahren
    • F. Natterer, Regularisierung schlecht gestellter Probleme durch Projektionsverfahren, Numer. Math. 28 (1977) 329-341.
    • (1977) Numer. Math. , vol.28 , pp. 329-341
    • Natterer, F.1
  • 33
    • 0033480745 scopus 로고    scopus 로고
    • Generalization bounds for function approximation from scattered noisy data
    • P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1999) 51-80.
    • (1999) Adv. Comput. Math. , vol.10 , pp. 51-80
    • Niyogi, P.1    Girosi, F.2
  • 34
    • 0042240449 scopus 로고
    • Approximations based on nonscalar observations
    • A. Sard, Approximations based on nonscalar observations, J. Approx. Theory 8 (1973) 315-334.
    • (1973) J. Approx. Theory , vol.8 , pp. 315-334
    • Sard, A.1
  • 37
    • 0006760903 scopus 로고
    • Convergence rates of certain approximate solutions to fredholm integral equations of the first kind
    • G. Wahba, Convergence rates of certain approximate solutions to fredholm integral equations of the first kind, J. Approx. Theory 7 (1973) 167-185.
    • (1973) J. Approx. Theory , vol.7 , pp. 167-185
    • Wahba, G.1
  • 38
    • 0009888565 scopus 로고
    • A class of approximate solutions to linear operator equations
    • G. Wahba, A class of approximate solutions to linear operator equations, J. Approx. Theory 9 (1973) 61-77.
    • (1973) J. Approx. Theory , vol.9 , pp. 61-77
    • Wahba, G.1
  • 39
    • 0042240448 scopus 로고    scopus 로고
    • Quadratures for boundary integral equations of the first kind with logarithmic kernels
    • Y. Xu and Y Zhao, Quadratures for boundary integral equations of the first kind with logarithmic kernels, J. Integral Equations Appl. 8 (1996) 239-268.
    • (1996) J. Integral Equations Appl. , vol.8 , pp. 239-268
    • Xu, Y.1    Zhao, Y.2
  • 40
    • 0027191632 scopus 로고
    • Pattern classification as an ill-posed, inverse problem: A regularization approach
    • Minneapolis
    • P. Yee and S. Haykin, Pattern classification as an ill-posed, inverse problem: a regularization approach, in: Proc. ICASSP-93 (Minneapolis, 1993).
    • (1993) Proc. ICASSP-93
    • Yee, P.1    Haykin, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.