-
3
-
-
35148873079
-
-
10.1103/RevModPhys.79.1217
-
R. Hanson, Rev. Mod. Phys. 79, 1217 (2007), and references therein. 10.1103/RevModPhys.79.1217
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 1217
-
-
Hanson, R.1
-
5
-
-
0000943085
-
-
10.1209/epl/i1997-00351-x
-
Y. Levinson, Europhys. Lett. 39, 299 (1997). 10.1209/epl/i1997-00351-x
-
(1997)
Europhys. Lett.
, vol.39
, pp. 299
-
-
Levinson, Y.1
-
6
-
-
0032568026
-
-
10.1038/36057
-
E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky, Nature (London) 391, 871 (1998). 10.1038/36057
-
(1998)
Nature (London)
, vol.391
, pp. 871
-
-
Buks, E.1
Schuster, R.2
Heiblum, M.3
Mahalu, D.4
Umansky, V.5
-
7
-
-
2542483989
-
-
10.1103/PhysRevLett.92.156801
-
M. Avinun-Kalish, M. Heiblum, A. Silva, D. Mahalu, and V. Umansky, Phys. Rev. Lett. 92, 156801 (2004). 10.1103/PhysRevLett.92.156801
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 156801
-
-
Avinun-Kalish, M.1
Heiblum, M.2
Silva, A.3
Mahalu, D.4
Umansky, V.5
-
8
-
-
0037815136
-
-
10.1126/science.1084175
-
R. Deblock, E. Onac, E. Gurevich, and L. P. Kouvenhoven, Science 301, 203 (2003), and its supporting online materials. 10.1126/science.1084175
-
(2003)
Science
, vol.301
, pp. 203
-
-
Deblock, R.1
Onac, E.2
Gurevich, E.3
Kouvenhoven, L.P.4
-
10
-
-
33646374427
-
-
10.1103/PhysRevLett.96.176601
-
E. Onac, F. Balestro, L. H. Willems van Beveren, U. Hartmann, Y. V. Nazarov, and L. P. Kouwenhoven, Phys. Rev. Lett. 96, 176601 (2006). 10.1103/PhysRevLett.96.176601
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 176601
-
-
Onac, E.1
Balestro, F.2
Willems Van Beveren, L.H.3
Hartmann, U.4
Nazarov, Y.V.5
Kouwenhoven, L.P.6
-
11
-
-
36148985718
-
-
10.1103/PhysRevLett.99.206804
-
S. Gustavsson, M. Studer, R. Leturcq, T. Ihn, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 99, 206804 (2007). 10.1103/PhysRevLett.99. 206804
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 206804
-
-
Gustavsson, S.1
Studer, M.2
Leturcq, R.3
Ihn, T.4
Ensslin, K.5
Driscoll, D.C.6
Gossard, A.C.7
-
12
-
-
0038409935
-
-
10.1126/science.1084647
-
L. Spietz, K. W. Lehnert, I. Siddiqi, and R. J. Schoelkopf, Science 300, 1929 (2003). 10.1126/science.1084647
-
(2003)
Science
, vol.300
, pp. 1929
-
-
Spietz, L.1
Lehnert, K.W.2
Siddiqi, I.3
Schoelkopf, R.J.4
-
13
-
-
33645032206
-
-
10.1103/RevModPhys.78.217
-
F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006). 10.1103/RevModPhys.78.217
-
(2006)
Rev. Mod. Phys.
, vol.78
, pp. 217
-
-
Giazotto, F.1
Heikkilä, T.T.2
Luukanen, A.3
Savin, A.M.4
Pekola, J.P.5
-
15
-
-
33746782886
-
-
10.1063/1.2221541;
-
L. DiCarlo, Rev. Sci. Instrum. 77, 073906 (2006) 10.1063/1.2221541
-
(2006)
Rev. Sci. Instrum.
, vol.77
, pp. 073906
-
-
Dicarlo, L.1
-
16
-
-
33746265301
-
-
10.1103/PhysRevLett.97.036810
-
L. DiCarlo, Y. Zhang, D. T. McClure, D. J. Reilly, C. M. Marcus, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 97, 036810 (2006). 10.1103/PhysRevLett.97.036810
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 036810
-
-
Dicarlo, L.1
Zhang, Y.2
McClure, D.T.3
Reilly, D.J.4
Marcus, C.M.5
Pfeiffer, L.N.6
West, K.W.7
-
18
-
-
44649178659
-
-
10.1088/1742-6596/109/1/012013
-
M. Hashisaka, J. Phys.: Conf. Ser. 109, 012013 (2008). 10.1088/1742-6596/109/1/012013
-
(2008)
J. Phys.: Conf. Ser.
, vol.109
, pp. 012013
-
-
Hashisaka, M.1
-
19
-
-
0000301753
-
-
10.1103/PhysRevLett.76.2778
-
A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 76, 2778 (1996). 10.1103/PhysRevLett.76.2778
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 2778
-
-
Kumar, A.1
Saminadayar, L.2
Glattli, D.C.3
Jin, Y.4
Etienne, B.5
-
20
-
-
0004473015
-
-
10.1016/S0370-1573(99)00123-4
-
Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000). 10.1016/S0370-1573(99)00123-4
-
(2000)
Phys. Rep.
, vol.336
, pp. 1
-
-
Blanter, Y.M.1
Büttiker, M.2
-
21
-
-
11944274178
-
-
10.1103/PhysRevLett.75.3340
-
M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75, 3340 (1995). 10.1103/PhysRevLett.75.3340
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3340
-
-
Reznikov, M.1
Heiblum, M.2
Shtrikman, H.3
Mahalu, D.4
-
22
-
-
0035831852
-
-
10.1088/0953-8984/13/14/312
-
P. Debray, J. Phys.: Condens. Matter 13, 3389 (2001). 10.1088/0953-8984/13/14/312
-
(2001)
J. Phys.: Condens. Matter
, vol.13
, pp. 3389
-
-
Debray, P.1
-
23
-
-
33746026334
-
-
10.1126/science.1126601
-
M. Yamamoto, Science 313, 204 (2006). 10.1126/science.1126601
-
(2006)
Science
, vol.313
, pp. 204
-
-
Yamamoto, M.1
-
24
-
-
34548395928
-
-
10.1103/PhysRevLett.99.096803
-
V. S. Khrapai, S. Ludwig, J. P. Kotthaus, H. P. Tranitz, and W. Wegscheider, Phys. Rev. Lett. 99, 096803 (2007). 10.1103/PhysRevLett.99.096803
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 096803
-
-
Khrapai, V.S.1
Ludwig, S.2
Kotthaus, J.P.3
Tranitz, H.P.4
Wegscheider, W.5
-
25
-
-
58149230309
-
-
While the shot noise gives the dominant contribution, to be more precise, QPC2 is a nonequilibrium noise detector.
-
While the shot noise gives the dominant contribution, to be more precise, QPC2 is a nonequilibrium noise detector.
-
-
-
-
26
-
-
58149230306
-
-
This capacitive coupling model is the most feasible explanation for the bolometric detection because of its high efficiency, while other mechanisms [coupling via phonons (Ref.), for example] might also play a role in the energy transfer between the QPCs.
-
This capacitive coupling model is the most feasible explanation for the bolometric detection because of its high efficiency, while other mechanisms [coupling via phonons (Ref.), for example] might also play a role in the energy transfer between the QPCs.
-
-
-
-
27
-
-
58149235863
-
-
As the nonlocal shot noise detection is caused by the capacitive coupling between two QPCs, it is expected that the efficiency (A) of the nonlocal detection does not depend on the geometrical distance between the source QPC and the detector. We have experimentally confirmed it by using several detectors located a few micrometers (1, 3.5, and 5 μm) away from the source QPC.
-
As the nonlocal shot noise detection is caused by the capacitive coupling between two QPCs, it is expected that the efficiency (A) of the nonlocal detection does not depend on the geometrical distance between the source QPC and the detector. We have experimentally confirmed it by using several detectors located a few micrometers (1, 3.5, and 5 μm) away from the source QPC.
-
-
-
-
28
-
-
58149241603
-
-
The value is overestimated as the transimpedance should be lowered from the estimation in the simple circuit model due to the stray capacitance around the DQPC sample (Ref.).
-
The value is overestimated as the transimpedance should be lowered from the estimation in the simple circuit model due to the stray capacitance around the DQPC sample (Ref.).
-
-
-
-
29
-
-
58149231696
-
-
We confirmed the bolometric noise detection when the detector QPC is set to out of the first conductance plateau. The efficiency of the detector monotonously decreases with increasing the conductance of the detector. For example, the detection efficiency with the detector set to the second plateau was 8%.
-
We confirmed the bolometric noise detection when the detector QPC is set to out of the first conductance plateau. The efficiency of the detector monotonously decreases with increasing the conductance of the detector. For example, the detection efficiency with the detector set to the second plateau was 8%.
-
-
-
-
30
-
-
33748636436
-
-
10.1038/nature05027
-
A. Naik, Nature (London) 443, 193 (2006). 10.1038/nature05027
-
(2006)
Nature (London)
, vol.443
, pp. 193
-
-
Naik, A.1
|