-
1
-
-
0001101787
-
-
Schoop, T.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H. G. Organometallics 1993, 12, 571-574.
-
(1993)
Organometallics
, vol.12
, pp. 571-574
-
-
Schoop, T.1
Roesky, H.W.2
Noltemeyer, M.3
Schmidt, H.G.4
-
2
-
-
0031005577
-
-
(a) Bellemin-Lapoimaz, S.; Gisie, H.; Pierre Le Nye, J.; Osborn, J. A. Angew. Chem., Int. Ed. Engl. 1997, 36, 976-978.
-
(1997)
Angew. Chem., Int. Ed. Engl
, vol.36
, pp. 976-978
-
-
Bellemin-Lapoimaz, S.1
Gisie, H.2
Pierre Le Nye, J.3
Osborn, J.A.4
-
3
-
-
0034603592
-
-
(b) Bellemin-Laponnaz, S.; Le Ny, J. P.; Osborn, J. A. Tetrahedron Lett. 2000, 41, 1549-1552.
-
(2000)
Tetrahedron Lett
, vol.41
, pp. 1549-1552
-
-
Bellemin-Laponnaz, S.1
Le Ny, J.P.2
Osborn, J.A.3
-
5
-
-
33749139719
-
-
(b) Morrill, C.; Beutner, G. L.; Grubbs, R. H. J. Org. Chem. 2006, 71, 7813-7825.
-
(2006)
J. Org. Chem
, vol.71
, pp. 7813-7825
-
-
Morrill, C.1
Beutner, G.L.2
Grubbs, R.H.3
-
6
-
-
0037119319
-
-
For several other related applications of high-oxidation Re catalysts in synthesis, see: a
-
For several other related applications of high-oxidation Re catalysts in synthesis, see: (a) Ishihara, K.; Furuya, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 2002, 41, 2983-2986.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 2983-2986
-
-
Ishihara, K.1
Furuya, Y.2
Yamamoto, H.3
-
7
-
-
23944499087
-
-
(b) Maeda, Y.; Nishimura, T.; Uemura, S. Chem. Lett. 2005, 34, 790-791.
-
(2005)
Chem. Lett
, vol.34
, pp. 790-791
-
-
Maeda, Y.1
Nishimura, T.2
Uemura, S.3
-
8
-
-
0037613457
-
-
(c) Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 6076-6077.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 6076-6077
-
-
Sherry, B.D.1
Radosevich, A.T.2
Toste, F.D.3
-
9
-
-
1842688302
-
-
(d) Sherry, B. D.; Loy, R. N.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4510-4511.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 4510-4511
-
-
Sherry, B.D.1
Loy, R.N.2
Toste, F.D.3
-
11
-
-
0001290261
-
-
Trost, B. M, Fleming, I, Heathcock, C. H, Eds, Pergamon Press: New York
-
(b) Snider, B. B. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: New York, 1991: Vol. 2, pp 527-561.
-
(1991)
Comprehensive Organic Synthesis
, vol.2
, pp. 527-561
-
-
Snider, B.B.1
-
14
-
-
84981754264
-
-
(a) Hanschke, E. Chem. Ber. 1955, 88, 1053-1061.
-
(1955)
Chem. Ber
, vol.88
, pp. 1053-1061
-
-
Hanschke, E.1
-
17
-
-
0035180198
-
-
(d) Yadav, J. S.; Reddy, B. V. S.; Kumar, G. M.; Murthy, C. V. S. R. Tetrahedron Lett. 2001, 42, 89-91.
-
(2001)
Tetrahedron Lett
, vol.42
, pp. 89-91
-
-
Yadav, J.S.1
Reddy, B.V.S.2
Kumar, G.M.3
Murthy, C.V.S.R.4
-
18
-
-
0037043016
-
-
(e) Ken, C. C. K.; Namboodiri, V. V.; Varma, R. S.; Li, C.-J. Tetrahedron Lett. 2002, 43, 4993-4996.
-
(2002)
Tetrahedron Lett
, vol.43
, pp. 4993-4996
-
-
Ken, C.C.K.1
Namboodiri, V.V.2
Varma, R.S.3
Li, C.-J.4
-
20
-
-
39349111497
-
-
(g) Yadav, J. S.; Reddy, B. V. S.; Kumar, G. G. K. S. N.; Aravind, S. Synthesis 2008, 395-400.
-
(2008)
Synthesis
, pp. 395-400
-
-
Yadav, J.S.1
Reddy, B.V.S.2
Kumar, G.G.K.S.N.3
Aravind, S.4
-
23
-
-
0035967778
-
-
(c) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem. 2001, 66, 4679-4686.
-
(2001)
J. Org. Chem
, vol.66
, pp. 4679-4686
-
-
Jaber, J.J.1
Mitsui, K.2
Rychnovsky, S.D.3
-
24
-
-
0141743328
-
-
(d) Barry, C. S. J.; Crosby, S. R.; Hardiag, J. R.; Hughes, R. A.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2003, 5, 2429-2432.
-
(2003)
Org. Lett
, vol.5
, pp. 2429-2432
-
-
Barry, C.S.J.1
Crosby, S.R.2
Hardiag, J.R.3
Hughes, R.A.4
King, C.D.5
Parker, G.D.6
Willis, C.L.7
-
25
-
-
33746895428
-
-
(e) Barry, C. S.; Elsworth, J. D.; Seden, P. T.; Bushby, N.; Harding, J. R.; Alder, R. W.; Willis, C. L. Org. Lett. 2006, 8, 3319-3322.
-
(2006)
Org. Lett
, vol.8
, pp. 3319-3322
-
-
Barry, C.S.1
Elsworth, J.D.2
Seden, P.T.3
Bushby, N.4
Harding, J.R.5
Alder, R.W.6
Willis, C.L.7
-
26
-
-
0028360370
-
-
(a) Lolkema, L. D. M.; Semeyn, C.; Ashek, L.; Hiemstra, H.; Speckamp, W. N. Tetrahedron 1994, 50, 7129-7140.
-
(1994)
Tetrahedron
, vol.50
, pp. 7129-7140
-
-
Lolkema, L.D.M.1
Semeyn, C.2
Ashek, L.3
Hiemstra, H.4
Speckamp, W.N.5
-
27
-
-
0035891722
-
-
(b) Rychnovsky, S. D.; Marumoto, S.; Jaber, J. J. Org. Lett. 2001, 3, 3815-3818.
-
(2001)
Org. Lett
, vol.3
, pp. 3815-3818
-
-
Rychnovsky, S.D.1
Marumoto, S.2
Jaber, J.J.3
-
28
-
-
0037042279
-
-
(c) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem. Soc. 2002, 124, 4960-4961.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 4960-4961
-
-
Alder, R.W.1
Harvey, J.N.2
Oakley, M.T.3
-
29
-
-
0001134456
-
-
(d) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 577-580.
-
(2002)
Org. Lett
, vol.4
, pp. 577-580
-
-
Crosby, S.R.1
Harding, J.R.2
King, C.D.3
Parker, G.D.4
Willis, C.L.5
-
30
-
-
23644446275
-
-
(e) Barry, C. S.; Bushby, N.; Harding, J. R.; Hughes, R. A.; Parker, G. D.; Roe, R.; Willis, C. L. Chem. Commun. 2005, 3727-3729.
-
(2005)
Chem. Commun
, pp. 3727-3729
-
-
Barry, C.S.1
Bushby, N.2
Harding, J.R.3
Hughes, R.A.4
Parker, G.D.5
Roe, R.6
Willis, C.L.7
-
31
-
-
22144498082
-
-
(f) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 9939-9945.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 9939-9945
-
-
Jasti, R.1
Anderson, C.D.2
Rychnovsky, S.D.3
-
33
-
-
0001425138
-
-
Chabardes, P.; Kuntz, E.; Varagnat, J. Tetrahedron 1977, 33, 1775-1783.
-
(1977)
Tetrahedron
, vol.33
, pp. 1775-1783
-
-
Chabardes, P.1
Kuntz, E.2
Varagnat, J.3
-
34
-
-
33845555896
-
-
2:
-
2:
-
-
-
-
36
-
-
4043069147
-
-
(a) Jasti, R.; Vitale, J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2004, 126, 9904-9905.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 9904-9905
-
-
Jasti, R.1
Vitale, J.2
Rychnovsky, S.D.3
-
37
-
-
33644504482
-
-
(b) Miles, R. B.; Davis, C. E.; Coates, R. M. J. Org. Chem. 2006, 71, 1493-1501.
-
(2006)
J. Org. Chem
, vol.71
, pp. 1493-1501
-
-
Miles, R.B.1
Davis, C.E.2
Coates, R.M.3
-
38
-
-
60949090709
-
-
This result stands in contrast to our Prins reaction approach to kendomycin, where an electron-rich aromatic ring led to side-chain exchange products as the major component in a TFA/DCM promoted reaction ref 13
-
This result stands in contrast to our Prins reaction approach to kendomycin, where an electron-rich aromatic ring led to side-chain exchange products as the major component in a TFA/DCM promoted reaction (ref 13).
-
-
-
-
40
-
-
60949111581
-
-
The aliphatic aldehyde oxonia-Cope rearrangement evident in Scheme 2 should be thermoneutral, whereas the aromatic oxonia-Cope should favor the aromatic oxocarbenium ion. In theory, this effect might suppress oxonia-Cope side reactions with aromatic aldehydes, but in our experience, it does not, perhaps because of a slower Prins cyclization with aromatic aldehydes. See ref 13 for an example
-
The aliphatic aldehyde oxonia-Cope rearrangement evident in Scheme 2 should be thermoneutral, whereas the aromatic oxonia-Cope should favor the aromatic oxocarbenium ion. In theory, this effect might suppress oxonia-Cope side reactions with aromatic aldehydes, but in our experience, it does not, perhaps because of a slower Prins cyclization with aromatic aldehydes. See ref 13 for an example.
-
-
-
-
41
-
-
0037451435
-
-
(a) Nokami, J.; Nomiyama, K.; Matsuda, S.; Imai, N.; Kataoka, K. Angew. Chem., Int. Ed. 2003, 42, 1273-1276.
-
(2003)
Angew. Chem., Int. Ed
, vol.42
, pp. 1273-1276
-
-
Nokami, J.1
Nomiyama, K.2
Matsuda, S.3
Imai, N.4
Kataoka, K.5
-
42
-
-
0035913727
-
-
(b) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 9168-9169.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 9168-9169
-
-
Nokami, J.1
Ohga, M.2
Nakamoto, H.3
Matsubara, T.4
Hussain, I.5
Kataoka, K.6
-
44
-
-
60949092649
-
-
A Prins reaction between alcohol 1 and cinnamaldehyde led to the expected product in 40% yield and the side-chain exchanged product 7 in 18% yield. Further work needs to be done to make Prins reactions with terminal alkenes practical.
-
A Prins reaction between alcohol 1 and cinnamaldehyde led to the expected product in 40% yield and the side-chain exchanged product 7 in 18% yield. Further work needs to be done to make Prins reactions with terminal alkenes practical.
-
-
-
-
45
-
-
0026632208
-
-
The wet reaction was run in water-saturated DCM. At 27°C, the concentration of water would be 0.137 M (0.186 wt %): Stephenson, R. M. J. Chem. Eng. Data 1992, 37, 80-95 With a catalyst concentration of 0.005 M, the molar ratio of water/Re(VII) would be ca, 27:1, For comparison, the molar ratio of commercial 70 wt % perrhenic acid is about 6:1 water/Re(VII). Presumably the difference in the water concentration led to the difference in outcome.
-
The "wet" reaction was run in water-saturated DCM. At 27°C, the concentration of water would be 0.137 M (0.186 wt %): Stephenson, R. M. J. Chem. Eng. Data 1992, 37, 80-95 With a catalyst concentration of 0.005 M, the molar ratio of water/Re(VII) would be ca, 27:1, For comparison, the molar ratio of commercial 70 wt % perrhenic acid is about 6:1 water/Re(VII). Presumably the difference in the water concentration led to the difference in outcome.
-
-
-
-
46
-
-
37049048425
-
-
Bailey, N.; Carrington, A.; Lott, K. A. K.; Symons, M. C. R. J. Chem. Soc. 1960, 290-297.
-
(1960)
J. Chem. Soc
, pp. 290-297
-
-
Bailey, N.1
Carrington, A.2
Lott, K.A.K.3
Symons, M.C.R.4
|