메뉴 건너뛰기




Volumn 3, Issue 4-5, 2003, Pages 833-862

Finding the most interesting patterns in a database quickly by using sequential sampling

Author keywords

Incremental learning; Large databases; Online learning; Sampling

Indexed keywords

DATABASE SYSTEMS; KNOWLEDGE BASED SYSTEMS; LEARNING ALGORITHMS; ONLINE SYSTEMS; OPTIMIZATION; PROBLEM SOLVING;

EID: 0141719772     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (57)

References (31)
  • 3
    • 0000182415 scopus 로고
    • A measure of asymptotic efficiency for tests of a hypothesis based on the sums of observations
    • H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sums of observations. Annals of Mathematical Statistics, 23:409-507, 1952.
    • (1952) Annals of Mathematical Statistics , vol.23 , pp. 409-507
    • Chernoff, H.1
  • 6
    • 0013164093 scopus 로고    scopus 로고
    • Adaptive sampling methods for scaling up knowledge discovery algorithms
    • Technical Report TR-C131, Dept. de LSI, Politecnica de Catalunya
    • C. Domingo, R. Gavelda, and O. Watanabe. Adaptive sampling methods for scaling up knowledge discovery algorithms. Technical Report TR-C131, Dept. de LSI, Politecnica de Catalunya, 1999.
    • (1999)
    • Domingo, C.1    Gavelda, R.2    Watanabe, O.3
  • 7
    • 0002814022 scopus 로고    scopus 로고
    • Knowledge discovery and data mining: Towards a unifying framework
    • U. Fayyad, G. Piatetski-Shapiro, and P. Smyth. Knowledge discovery and data mining: Towards a unifying framework. In KDD-96, 1996.
    • (1996) KDD-96
    • Fayyad, U.1    Piatetski-Shapiro, G.2    Smyth, P.3
  • 11
    • 0030193409 scopus 로고    scopus 로고
    • PALO: A probabilistic hill-climbing algorithm
    • July
    • Russell Greiner. PALO: A probabilistic hill-climbing algorithm. Artificial Intelligence, 83(1-2), July 1996.
    • (1996) Artificial Intelligence , vol.83 , Issue.1-2
    • Greiner, R.1
  • 12
    • 4243529672 scopus 로고
    • Sequential sampling procedures for quesy size estimation
    • Research Report RJ 9101 (80915), IBM
    • P. Haas and A. Swami. Sequential sampling procedures for quesy size estimation. Research Report RJ 9101 (80915), IBM, 1992.
    • (1992)
    • Haas, P.1    Swami, A.2
  • 14
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30, 1963.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 17
    • 0026914112 scopus 로고
    • Problems in knowledge discovery in databases and their treatment in the statistics interpreter explora
    • W. Klösgen. Problems in knowledge discovery in databases and their treatment in the statistics interpreter explora. Journal of Intelligent Systems, 7:649-673, 1992.
    • (1992) Journal of Intelligent Systems , vol.7 , pp. 649-673
    • Klösgen, W.1
  • 19
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • AAAI
    • W. Klösgen. Explora: A multipattern and multistrategy discovery assistant. In Advances in Knowledge Discovery and Data Mining, pages 249-271. AAAI, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klösgen, W.1
  • 21
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximating
    • O. Maron and A. Moore. Hoeffding races: Accelerating model selection search for classification and function approximating. In Advances in Neural Information Processing Systems, pages 59-66, 1994.
    • (1994) Advances in Neural Information Processing Systems , pp. 59-66
    • Maron, O.1    Moore, A.2
  • 23
    • 0002877253 scopus 로고
    • Discovery, analysis, and presentation of strong rules
    • G. Piatetski-Shapiro. Discovery, analysis, and presentation of strong rules. In Knowledge Discovery in Databases, pages 229-248, 1991.
    • (1991) Knowledge Discovery in Databases , pp. 229-248
    • Piatetski-Shapiro, G.1
  • 25
    • 24544470725 scopus 로고    scopus 로고
    • Hidden markov models for text classification and information extraction
    • Technical report, University of Magdeburg
    • T. Scheffer and S. Wrobel. Hidden markov models for text classification and information extraction. Technical report, University of Magdeburg, 2002.
    • (2002)
    • Scheffer, T.1    Wrobel, S.2
  • 30
    • 85128067285 scopus 로고
    • The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework
    • In D. H. Wolpert, editor; The SFI Studies in the Sciences of Complexity; Addison-Wesley
    • D. H. Wolpert. The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework. In D. H. Wolpert, editor, The Mathematics of Generalization, The SFI Studies in the Sciences of Complexity, pages 117-214. Addison-Wesley, 1995.
    • (1995) The Mathematics of Generalization , pp. 117-214
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.