-
1
-
-
0001456654
-
-
0038-1098 10.1016/0038-1098(86)90741-6.
-
M. P. J. van Staveren, H. B. Brom, L. J. de Jongh, and G. Schmid, Solid State Commun. 0038-1098 10.1016/0038-1098(86)90741-6 60, 319 (1986).
-
(1986)
Solid State Commun.
, vol.60
, pp. 319
-
-
Van Staveren, M.P.J.1
Brom, H.B.2
De Jongh, L.J.3
Schmid, G.4
-
3
-
-
15844386157
-
-
0002-7863 10.1021/ja00155a017.
-
R. H. Terrill, T. A. Postlethwaite, C. -h. Chen, C. -D. Poon, A. Terzis, A. Chen, J. E. Hutchison, M. R. Clark, G. Wignall, J. D. Londono, R. Superfine, M. Falvo, C. S. Johnson, Jr., E. T. Samulski, and R. W. Murray, J. Am. Chem. Soc. 0002-7863 10.1021/ja00155a017 117, 12537 (1995).
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 12537
-
-
Terrill, R.H.1
Postlethwaite, T.A.2
Chen, C.-H.3
Poon, C.-D.4
Terzis, A.5
Chen, A.6
Hutchison, J.E.7
Clark, M.R.8
Wignall, G.9
Londono, J.D.10
Superfine, R.11
Falvo, M.12
Johnson Jr., C.S.13
Samulski, E.T.14
Murray, R.W.15
-
4
-
-
0034703706
-
-
0002-7863 10.1021/ja002367+.
-
W. P. Wuelfing, S. J. Green, J. J. Pietron, D. E. Cliffel, and R. W. Murray, J. Am. Chem. Soc. 0002-7863 10.1021/ja002367+ 122, 11465 (2000).
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 11465
-
-
Wuelfing, W.P.1
Green, S.J.2
Pietron, J.J.3
Cliffel, D.E.4
Murray, R.W.5
-
6
-
-
0029377984
-
-
0935-9648.
-
M. Brust, D. Bethell, D. J. Schiffrin, and C. J. Kiely, Adv. Mater. (Weinheim, Ger.) 0935-9648 7, 795 (1995).
-
(1995)
Adv. Mater. (Weinheim, Ger.)
, vol.7
, pp. 795
-
-
Brust, M.1
Bethell, D.2
Schiffrin, D.J.3
Kiely, C.J.4
-
7
-
-
27744492730
-
-
0959-9428 10.1039/b508404k.
-
A. J. Quinn, M. Biancardo, L. Floyd, M. Belloni, P. R. Ashton, J. A. Preece, C. A. Bignozzi, and G. Redmond, J. Mater. Chem. 0959-9428 10.1039/b508404k 15, 4403 (2005).
-
(2005)
J. Mater. Chem.
, vol.15
, pp. 4403
-
-
Quinn, A.J.1
Biancardo, M.2
Floyd, L.3
Belloni, M.4
Ashton, P.R.5
Preece, J.A.6
Bignozzi, C.A.7
Redmond, G.8
-
8
-
-
1542528846
-
-
0036-8075
-
R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahony, and R. G. Osifchin, Science 273, 1690 (1996). 0036-8075
-
(1996)
Science
, vol.273
, pp. 1690
-
-
Andres, R.P.1
Bielefeld, J.D.2
Henderson, J.I.3
Janes, D.B.4
Kolagunta, V.R.5
Kubiak, C.P.6
Mahony, W.J.7
Osifchin, R.G.8
-
10
-
-
0031587262
-
-
0036-8075 10.1126/science.277.5334.1978.
-
C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Science 0036-8075 10.1126/science.277.5334.1978 277, 1978 (1997).
-
(1997)
Science
, vol.277
, pp. 1978
-
-
Collier, C.P.1
Saykally, R.J.2
Shiang, J.J.3
Henrichs, S.E.4
Heath, J.R.5
-
12
-
-
0346937201
-
-
1089-5647 10.1021/jp036357h.
-
F. Remacle, K. C. Beverly, J. R. Heath, and R. D. Levine, J. Phys. Chem. B 1089-5647 10.1021/jp036357h 107, 13892 (2003).
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 13892
-
-
Remacle, F.1
Beverly, K.C.2
Heath, J.R.3
Levine, R.D.4
-
13
-
-
0000615737
-
-
0897-4756 10.1021/cm970794
-
A. W. Snow and H. Wohltjen, Chem. Mater. 0897-4756 10.1021/cm970794p 10, 947 (1998).
-
(1998)
Chem. Mater.
, vol.10
, pp. 947
-
-
Snow, A.W.1
Wohltjen, H.2
-
14
-
-
0037356594
-
-
1434-1948 10.1002/ejic.200390143.
-
V. Torma, O. Vidoni, U. Simon, and G. Schmid, Eur. J. Inorg. Chem. 1434-1948 10.1002/ejic.200390143 2003, 1121 (2003).
-
(2003)
Eur. J. Inorg. Chem.
, vol.2003
, pp. 1121
-
-
Torma, V.1
Vidoni, O.2
Simon, U.3
Schmid, G.4
-
15
-
-
1642377161
-
-
0002-7863 10.1021/ja0377605.
-
J. M. Wessels, H. -G. Nothofer, W. E. Ford, F. V. Wrochem, F. Scholz, T. Vossmeyer, A. Schroedter, H. Weller, and A. Yasuda, J. Am. Chem. Soc. 0002-7863 10.1021/ja0377605 126, 3349 (2004).
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 3349
-
-
Wessels, J.M.1
Nothofer, H.-G.2
Ford, W.E.3
Wrochem, F.V.4
Scholz, F.5
Vossmeyer, T.6
Schroedter, A.7
Weller, H.8
Yasuda, A.9
-
17
-
-
1542267676
-
-
0301-7249 10.1039/b302781c.
-
M. C. Leopold, R. L. Donkers, D. Georganopoulou, M. Fisher, F. P. Samborini, and R. W. Murray, Faraday Discuss. 0301-7249 10.1039/b302781c 125, 63 (2004).
-
(2004)
Faraday Discuss.
, vol.125
, pp. 63
-
-
Leopold, M.C.1
Donkers, R.L.2
Georganopoulou, D.3
Fisher, M.4
Samborini, F.P.5
Murray, R.W.6
-
19
-
-
0037205907
-
-
0002-7863 10.1021/ja025965s.
-
F. P. Zamborini, M. C. Leopold, J. F. Hicks, P. J. Kulesza, M. A. Mali, and R. W. Murray, J. Am. Chem. Soc. 0002-7863 10.1021/ja025965s 124, 8958 (2002).
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 8958
-
-
Zamborini, F.P.1
Leopold, M.C.2
Hicks, J.F.3
Kulesza, P.J.4
Mali, M.A.5
Murray, R.W.6
-
21
-
-
0033807532
-
-
0897-4756 10.1021/cm990429t.
-
N. Sandhyarani, M. R. Resmi, R. Unnikrishnan, K. Vidyasagar, S. Ma, M. P. Antony, G. P. Selvam, V. Visalakshi, N. Chandrakumar, K. Pandian, Y. -T. Tao, and T. Pradeep, Chem. Mater. 0897-4756 10.1021/cm990429t 12, 104 (2000).
-
(2000)
Chem. Mater.
, vol.12
, pp. 104
-
-
Sandhyarani, N.1
Resmi, M.R.2
Unnikrishnan, R.3
Vidyasagar, K.4
Ma, S.5
Antony, M.P.6
Selvam, G.P.7
Visalakshi, V.8
Chandrakumar, N.9
Pandian, K.10
Tao, Y.-T.11
Pradeep, T.12
-
22
-
-
0043199656
-
-
1089-5647 10.1021/jp030439o.
-
Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H. -G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlögl, A. Yasuda, and T. Vossmeyer, J. Phys. Chem. B 1089-5647 10.1021/jp030439o 107, 7406 (2003).
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 7406
-
-
Joseph, Y.1
Besnard, I.2
Rosenberger, M.3
Guse, B.4
Nothofer, H.-G.5
Wessels, J.M.6
Wild, U.7
Knop-Gericke, A.8
Su, D.9
Schlögl, R.10
Yasuda, A.11
Vossmeyer, T.12
-
23
-
-
0001278483
-
-
0897-4756 10.1021/cm970087w.
-
M. D. Musick, C. D. Keating, M. H. Keefe, and M. J. Natan, Chem. Mater. 0897-4756 10.1021/cm970087w 9, 1499 (1997).
-
(1997)
Chem. Mater.
, vol.9
, pp. 1499
-
-
Musick, M.D.1
Keating, C.D.2
Keefe, M.H.3
Natan, M.J.4
-
24
-
-
0037046130
-
-
0927-7757 10.1016/S0927-7757(01)01087-1.
-
M. Brust and C. J. Kiely, Colloids Surf., A 0927-7757 10.1016/S0927-7757(01)01087-1 202, 175 (2002).
-
(2002)
Colloids Surf., A
, vol.202
, pp. 175
-
-
Brust, M.1
Kiely, C.J.2
-
25
-
-
0033076383
-
-
0743-7463 10.1021/la9812828.
-
S. Chen and K. Kimura, Langmuir 0743-7463 10.1021/la9812828 15, 1075 (1999).
-
(1999)
Langmuir
, vol.15
, pp. 1075
-
-
Chen, S.1
Kimura, K.2
-
27
-
-
2942637358
-
-
0002-7863 10.1021/ja031822+.
-
S. Wang, H. Yao, S. Sato, and K. Kimura, J. Am. Chem. Soc. 0002-7863 10.1021/ja031822+ 126, 7438 (2004).
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 7438
-
-
Wang, S.1
Yao, H.2
Sato, S.3
Kimura, K.4
-
28
-
-
56349106454
-
-
See EPAPS Document No. E-JCPSA6-129-034842 for characterization of the MPCs and Abeles activation plot. For more information on EPAPS, see.
-
See EPAPS Document No. E-JCPSA6-129-034842 for characterization of the MPCs and Abeles activation plot. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
-
-
-
-
29
-
-
56349135360
-
-
Kubo gap, δ, represents the spacing between the successive energy levels of the clusters as a result of the confinement of the electronic wavefunction. δ=4 EF /3N, where EF is the Fermi energy of the bulk metal (5.53 eV for gold) and N is the number of valence electrons in the clusters.
-
Kubo gap, δ, represents the spacing between the successive energy levels of the clusters as a result of the confinement of the electronic wavefunction. δ=4 EF /3N, where EF is the Fermi energy of the bulk metal (5.53 eV for gold) and N is the number of valence electrons in the clusters.
-
-
-
-
30
-
-
56349163248
-
-
Cluster charging energy was estimated using the equation Ec = e2 /2C, where e is the electronic charge and C is the capacitance of the clusters. The capacitance of the clusters was calculated by using the equation (Ref.) C=4π ε0 εrS/ [S-r (1-ε)], where ε0 is the permittivity of free space, ε is the relative dielectric constant of the medium around the clusters, which is taken as 2 based on experimentally determined values for similar acids having three to six C atoms (CRC Handbook for Chemistry and Physics, 73rd ed. 1992-1993), r is the radius of the cluster cores, and S=r+l, where l is the length of the capping molecules, which in the present case is ∼0.6 nm.
-
Cluster charging energy was estimated using the equation Ec = e2 /2C, where e is the electronic charge and C is the capacitance of the clusters. The capacitance of the clusters was calculated by using the equation (Ref.) C=4π ε0 εrS/ [S-r (1-ε)], where ε0 is the permittivity of free space, ε is the relative dielectric constant of the medium around the clusters, which is taken as 2 based on experimentally determined values for similar acids having three to six C atoms (CRC Handbook for Chemistry and Physics, 73rd ed. 1992-1993), r is the radius of the cluster cores, and S=r+l, where l is the length of the capping molecules, which in the present case is ∼0.6 nm.
-
-
-
-
31
-
-
0000561103
-
-
0039-6028 10.1016/0039-6028(86)90501-7.
-
N. J. Persson, Surf. Sci. 0039-6028 10.1016/0039-6028(86)90501-7 172, 557 (1993).
-
(1993)
Surf. Sci.
, vol.172
, pp. 557
-
-
Persson, N.J.1
-
32
-
-
56349159563
-
-
Since perfectly ordered MPCs units in three-dimensional superlattices (3D SLs) form connecting conducting channels (and hence the temperature dependent metalliclike to semiconductor crossover process), it is reasonable to assume that the randomly deposited MPCs in thin films also produce a few conductive networks. However, the exact mechanism by which such network paths are formed in thin films and 3D SLs is still not completely understood.
-
Since perfectly ordered MPCs units in three-dimensional superlattices (3D SLs) form connecting conducting channels (and hence the temperature dependent metalliclike to semiconductor crossover process), it is reasonable to assume that the randomly deposited MPCs in thin films also produce a few conductive networks. However, the exact mechanism by which such network paths are formed in thin films and 3D SLs is still not completely understood.
-
-
-
-
33
-
-
56349101548
-
-
The resistivity (ρ) of the clusters in the metallic region at two different temperatures (T1 and T2) is given by the expression ρ T2 = ρ T1 (1+α (T2 - T1))), where T2 > T1 and α is the temperature coefficient of resistivity.
-
The resistivity (ρ) of the clusters in the metallic region at two different temperatures (T1 and T2) is given by the expression ρ T2 = ρ T1 (1+α (T2-T1))), where T2 > T1 and α is the temperature coefficient of resistivity.
-
-
-
-
34
-
-
0002265101
-
-
0039-6028 10.1016/0039-6028(81)90180-1.
-
J. Harada and K. Ohshima, Surf. Sci. 0039-6028 10.1016/0039-6028(81) 90180-1 106, 51 (1981).
-
(1981)
Surf. Sci.
, vol.106
, pp. 51
-
-
Harada, J.1
Ohshima, K.2
-
36
-
-
0344357692
-
-
0001-8732 10.1080/00018737500101431.
-
B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. 0001-8732 10.1080/00018737500101431 24, 407 (1975).
-
(1975)
Adv. Phys.
, vol.24
, pp. 407
-
-
Abeles, B.1
Sheng, P.2
Coutts, M.D.3
Arie, Y.4
-
37
-
-
4243886814
-
-
0031-9007 10.1103/PhysRevLett.28.34.
-
P. Sheng and B. Abeles, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett. 28.34 28, 34 (1972).
-
(1972)
Phys. Rev. Lett.
, vol.28
, pp. 34
-
-
Sheng, P.1
Abeles, B.2
|