메뉴 건너뛰기




Volumn 59, Issue 4, 2003, Pages 992-1000

Penalized Discriminant Methods for the Classification of Tumors from Gene Expression Data

Author keywords

Cross validation; Microarrays; Partial least squares; Principal components; Regularization; Ridge regression

Indexed keywords

DISEASES; GENE EXPRESSION; LEAST SQUARES APPROXIMATIONS; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; TUMORS;

EID: 0346102889     PISSN: 0006341X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.0006-341X.2003.00114.x     Document Type: Article
Times cited : (36)

References (31)
  • 1
    • 0034812859 scopus 로고    scopus 로고
    • Towards a novel classification of human malignancies based on gene expression patterns
    • Alizadeh, A. A., Ross, D. T., Perou, C. M., and van de Rijn, M. (2001). Towards a novel classification of human malignancies based on gene expression patterns. Journal of Pathology 195, 41-52.
    • (2001) Journal of Pathology , vol.195 , pp. 41-52
    • Alizadeh, A.A.1    Ross, D.T.2    Perou, C.M.3    Van De Rijn, M.4
  • 2
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter, O., Brown P. O., and Botstein D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences 97, 10101-10106.
    • (2000) Proceedings of the National Academy of Sciences , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0006432129 scopus 로고
    • The efficiency of multinomial logistic regression compared with multigroup normal discriminant analysis
    • Bull, S. and Donner, A. (1987). The efficiency of multinomial logistic regression compared with multigroup normal discriminant analysis. Journal of the American Statistical Association 82, 1118-1122.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 1118-1122
    • Bull, S.1    Donner, A.2
  • 6
    • 0001742646 scopus 로고
    • Implementing partial least squares
    • Denham, M. C. (1994). Implementing partial least squares. Statistics and Computing 5, 191-202.
    • (1994) Statistics and Computing , vol.5 , pp. 191-202
    • Denham, M.C.1
  • 9
    • 84886193637 scopus 로고
    • The efficiency of logistic regression compared to normal discriminant analysis
    • Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant analysis. Journal of the American Statistical Association 70, 113-121.
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 113-121
    • Efron, B.1
  • 11
    • 84952149204 scopus 로고
    • A statistical view of some chemometric regression tools (with discussion)
    • Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometric regression tools (with discussion). Technometrics 35, 109-143.
    • (1993) Technometrics , vol.35 , pp. 109-143
    • Frank, I.E.1    Friedman, J.H.2
  • 12
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics 19, 1-141.
    • (1991) Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 14
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 19
    • 4244123075 scopus 로고    scopus 로고
    • Cluster-Rasch models for microarray data
    • Li, H. and Hong, F. (2001). Cluster-Rasch models for microarray data. Genome Biology 2, 1-13.
    • (2001) Genome Biology , vol.2 , pp. 1-13
    • Li, H.1    Hong, F.2
  • 22
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • Marx, B. D. (1996). Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38, 374-381.
    • (1996) Technometrics , vol.38 , pp. 374-381
    • Marx, B.D.1
  • 23
    • 78751702657 scopus 로고
    • Principal components estimation for generalized linear regression
    • Marx, B. D. and Smith, E. P. (1990). Principal components estimation for generalized linear regression. Biometrika 77, 23-31.
    • (1990) Biometrika , vol.77 , pp. 23-31
    • Marx, B.D.1    Smith, E.P.2
  • 24
    • 0000957593 scopus 로고
    • Principal components regression in exploratory statistical research
    • Massy, W. F. (1965). Principal components regression in exploratory statistical research. Journal of the American Statistical Association 60, 234-246.
    • (1965) Journal of the American Statistical Association , vol.60 , pp. 234-246
    • Massy, W.F.1
  • 26
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical prediction (with discussion)
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical prediction (with discussion). Journal of the Royal Statistical Society, Series B 36, 111-147.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 111-147
    • Stone, M.1
  • 27
    • 0000818474 scopus 로고
    • Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression (with discussion)
    • Stone, M. and Brooks, R. J. (1990). Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression (with discussion). Journal of the Royal Statistical Society, Series B 52, 237-269.
    • (1990) Journal of the Royal Statistical Society, Series B , vol.52 , pp. 237-269
    • Stone, M.1    Brooks, R.J.2
  • 28
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • to appear
    • West, M. (2003). Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statistics 7, to appear.
    • (2003) Bayesian Statistics , vol.7
    • West, M.1
  • 30
    • 0002692783 scopus 로고
    • Soft modeling by latent variables: The non-linear iterative partial least squares approach
    • Papers in Honour of M. S. Bartlett, J. Gani (ed). London: Academic Press
    • Wold, H. (1975). Soft modeling by latent variables: The non-linear iterative partial least squares approach. In Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett, J. Gani (ed). London: Academic Press.
    • (1975) Perspectives in Probability and Statistics
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.