메뉴 건너뛰기




Volumn , Issue , 2007, Pages 465-472

Data integration for classification problems employing Gaussian process priors

Author keywords

[No Author keywords available]

Indexed keywords

AD HOC PARAMETERS; APPROXIMATE INFERENCE; BAYESIAN SOLUTION; CLASSIFIER COMBINATION; COVARIANCE FUNCTION; DATA INTEGRATION; EXPECTATION PROPAGATION; GAUSSIAN PROCESS PRIORS; HETEROGENEOUS DATA; LARGE SCALE PROTEINS; MULTIPLE DATA; OPTIMAL COMBINATION; PREDICTION PROBLEM; STATE-OF-THE-ART PERFORMANCE;

EID: 84864066685     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (33)

References (16)
  • 1
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • A. Ben-Hur andW.S. Noble. Kernel methods for predicting protein-protein interactions. Bioinformatics, 21, Suppl. 1:38-46, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1 , pp. 38-46
    • Ben-Hur, A.1    Noble, W.S.2
  • 2
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Chris Ding and Inna Dubchak. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17:349-358, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.1    Dubchak, I.2
  • 3
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with Gaussian process priors
    • Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18(8):1790-1817, 2006.
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 4
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • M. Kuss and C.E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research, 6:1679-1704, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2
  • 6
    • 14344262126 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • S. Thrun S. Becker and K. Obermayer, editors. MIT Press
    • Neil Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15. MIT Press.
    • Advances in Neural Information Processing Systems , vol.15
    • Lawrence, N.1    Seeger, M.2    Herbrich, R.3
  • 8
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using Gaussian process priors
    • A.P. Dawid, M. Bernardo, J.O. Berger, and A.F.M. Smith, editors. Oxford University Press
    • R. Neal. Regression and classification using Gaussian process priors. In A.P. Dawid, M. Bernardo, J.O. Berger, and A.F.M. Smith, editors, Bayesian Statistics 6, pages 475-501. Oxford University Press, 1998.
    • (1998) Bayesian Statistics , vol.6 , pp. 475-501
    • Neal, R.1
  • 9
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • Paul Pavlidis, Jason Weston, Jinsong Cai, and William Stafford Noble. Learning gene functional classifications from multiple data types. Journal of Computational Biology, 9(2):401-411, 2002.
    • (2002) Journal of Computational Biology , vol.9 , Issue.2 , pp. 401-411
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Noble, W.S.4
  • 10
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for support vector machines
    • A. Smola, P. Bartlett, B. Schlkopf, and D. Schuurmans, editors. MIT Press
    • J.C. Platt. Probabilities for support vector machines. In A. Smola, P. Bartlett, B. Schlkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-74. MIT Press, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 13
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Advanced Access(doi:10.1093)
    • Hong-Bin Shen and Kuo-Chen Chou. Ensemble classifier for protein fold pattern recognition. Bioinformatics, Advanced Access(doi:10.1093), 2006.
    • (2006) Bioinformatics
    • Shen, H.-B.1    Chou, K.-C.2
  • 14
    • 17644421285 scopus 로고    scopus 로고
    • Laplace propagation
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors. MIT Press, Cambridge, MA
    • Alexander Smola, Vishy Vishwanathan, and Eleazar Eskin. Laplace propagation. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Smola, A.1    Vishwanathan, V.2    Eskin, E.3
  • 16
    • 19544389868 scopus 로고    scopus 로고
    • Protein network inference from multiple genomic data: A supervised approach
    • Y. Yamanishi, J. P. Vert, and M. Kanehisa. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics, 20, Suppl. 1:363-370, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1 , pp. 363-370
    • Yamanishi, Y.1    Vert, J.P.2    Kanehisa, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.